### Refine

#### Document Type

- Doctoral Thesis (1)
- Lecture (1)
- Preprint (1)
- Report (1)

#### Keywords

- Analysis (4) (remove)

#### Faculty / Organisational entity

Magnetoelastic coupling describes the mutual dependence of the elastic and magnetic fields and can be observed in certain types of materials, among which are the so-called "magnetostrictive materials". They belong to the large class of "smart materials", which change their shape, dimensions or material properties under the influence of an external field. The mechanical strain or deformation a material experiences due to an externally applied magnetic field is referred to as magnetostriction; the reciprocal effect, i.e. the change of the magnetization of a body subjected to mechanical stress is called inverse magnetostriction. The coupling of mechanical and electromagnetic fields is particularly observed in "giant magnetostrictive materials", alloys of ferromagnetic materials that can exhibit several thousand times greater magnitudes of magnetostriction (measured as the ratio of the change in length of the material to its original length) than the common magnetostrictive materials. These materials have wide applications areas: They are used as variable-stiffness devices, as sensors and actuators in mechanical systems or as artificial muscles. Possible application fields also include robotics, vibration control, hydraulics and sonar systems.
Although the computational treatment of coupled problems has seen great advances over the last decade, the underlying problem structure is often not fully understood nor taken into account when using black box simulation codes. A thorough analysis of the properties of coupled systems is thus an important task.
The thesis focuses on the mathematical modeling and analysis of the coupling effects in magnetostrictive materials. Under the assumption of linear and reversible material behavior with no magnetic hysteresis effects, a coupled magnetoelastic problem is set up using two different approaches: the magnetic scalar potential and vector potential formulations. On the basis of a minimum energy principle, a system of partial differential equations is derived and analyzed for both approaches. While the scalar potential model involves only stationary elastic and magnetic fields, the model using the magnetic vector potential accounts for different settings such as the eddy current approximation or the full Maxwell system in the frequency domain.
The distinctive feature of this work is the analysis of the obtained coupled magnetoelastic problems with regard to their structure, strong and weak formulations, the corresponding function spaces and the existence and uniqueness of the solutions. We show that the model based on the magnetic scalar potential constitutes a coupled saddle point problem with a penalty term. The main focus in proving the unique solvability of this problem lies on the verification of an inf-sup condition in the continuous and discrete cases. Furthermore, we discuss the impact of the reformulation of the coupled constitutive equations on the structure of the coupled problem and show that in contrast to the scalar potential approach, the vector potential formulation yields a symmetric system of PDEs. The dependence of the problem structure on the chosen formulation of the constitutive equations arises from the distinction of the energy and coenergy terms in the Lagrangian of the system. While certain combinations of the elastic and magnetic variables lead to a coupled magnetoelastic energy function yielding a symmetric problem, the use of their dual variables results in a coupled coenergy function for which a mixed problem is obtained.
The presented models are supplemented with numerical simulations carried out with MATLAB for different examples including a 1D Euler-Bernoulli beam under magnetic influence and a 2D magnetostrictive plate in the state of plane stress. The simulations are based on material data of Terfenol-D, a giant magnetostrictive materials used in many industrial applications.

Im Sommersemester 2008 führte die AG Optimierung, FB Mathematik zusammen mit dem FB Chemie und dem FB Pädagogik ein interdisziplinäres Seminar zur „Fachdidaktik Chemie und Mathematik“ durch. Durch dieses integrative Lehrveranstaltungskonzept sollte die Nachhaltigkeit der Ausbildung gestärkt und die Verknüpfung von Allgemeiner Didaktik mit der Fachdidaktik sowie zwischen verschiedenen Fachbereichen gefördert werden. In dieser speziellen Veranstaltung erarbeiteten sich die Teilnehmer Inhalte in der Schnittmenge von Chemie und Mathematik, nämlich Kristallgeometrie, Analysis und Titration sowie Graphentheorie und Trennverfahren. Ihre Erkenntnisse wurden im Rahmen von Seminarvorträgen präsentiert und ausgearbeitet. Im folgenden Report befinden sich die Ausarbeitungen, welche Lernziele und Kompetenzen, Sach-, Methodische und Didaktische Analysen sowie Unterrichtsentwürfe umfassen.

This paper deals with the characterization of microscopically heterogeneous, but macroscopically homogeneous spatial structures. A new method is presented which is strictly based on integral-geometric formulae such as Crofton's intersection formulae and Hadwiger's recursive de nition of the Euler number. The corresponding algorithms have clear advantages over other techniques. As an example of application we consider the analysis of spatial digital images produced by means of Computer Assisted Tomo- graphy.

Convex Analysis
(1998)

Preface Convex analysis is one of the mathematical tools which is used both explicitly and indirectly in many mathematical disciplines. However, there are not so many courses which have convex analysis as the main topic. More often, parts of convex analysis are taught in courses like linear or nonlinear optimization, probability theory, geometry, location theory, etc.. This manuscript gives a systematic introduction to the concepts of convex analysis. A focus is set to the geometrical interpretation of convex analysis. This focus was one of the reasons why I have decided to restrict myself to the finite dimensional case. Another reason for this restriction is that in the infinite dimensional case many proofs become more difficult and more technical. Therefore, it would not have been possible (for me) to cover all the topics I wanted to discuss in this introductory text in the infinite dimensional case, too. Anyway, I am convinced that even for someone who is interested in the infinite dimensional case this manuscript will be a good starting point. When I offered a course in convex analysis in the Wintersemester 1997/1998 (upon which this manuscript is based) a lot of students asked me how this course fits in their own studies. Because this manuscript will (hopefully) be used by some students in the future, I will give here some of the possible statements to answer this very question. - Convex analysis can be seen as an extension of classical analysis, in which still we get many of the results, like a mean-value theorem, with less assumptions on the smoothness of the function. - Convex analysis can be seen as a foundation of linear and nonlinear optimization which provides many tools to handle concepts in optimization much easier (for example the Lemma of Farkas). - Finally, convex analysis can be seen as a link between abstract geometry and very algorithmic oriented computational geometry. As already explained before, this manuscript is based on a one semester course and therefore cannot cover all topics and discuss all aspects of convex analysis in detail. To guide the interested reader I have included a list of nice books about this subject at the end of the manuscript. It should be noted that the philosophy of this course follows [3], [4] and THE BOOK of modern convex analysis [6]. The geometrical emphasis however, is also related to intentions of [1].^L