### Refine

#### Year of publication

- 1992 (41) (remove)

#### Document Type

- Report (21)
- Preprint (18)
- Article (1)
- Diploma Thesis (1)

#### Keywords

#### Faculty / Organisational entity

- Fachbereich Mathematik (41) (remove)

On the Mróz Model
(1992)

Weighted k-cardinality trees
(1992)

We consider the k -CARD TREE problem, i.e., the problem of finding in a given undirected graph G a subtree with k edges, having minimum weight. Applications of this problem arise in oil-field leasing and facility layout. While the general problem is shown to be strongly NP hard, it can be solved in polynomial time if G is itself a tree. We give an integer programming formulation of k-CARD TREE, and an efficient exact separation routine for a set of generalized subtour elimination constraints. The polyhedral structure of the convex huLl of the integer solutions is studied.

The polynomial approach introduced in Fuhrmann [1991] is extended to cover the crucial area of AAK theory, namely the characterization of zero location of the Schmidt vectors of the Hankel operators. This is done using the duality theory developed in that paper but with a twist. First we get the standard, lower bound, estimates on the number of unstable zeroes of the minimal degree Schmidt vectors of the Hankel operator. In the case of the Schmidt vector corresponding to the smallest singular the lower bound is in fact achieved. This leads to a solution of a Bezout equation. We use this Bezout equation to introduce another Hankel operator which have singular values that are the inverse of the singular values of the original Hankel operator.

We present a generalization of Proth's theorem for testing certain large integers for primality. The use of Gauß sums leads to a much simpler approach to these primality criteria as compared to the earlier tests. The running time of the algorithms is bounded by a polynomial in the length of the input string. The applicability of our algorithms is linked to certain diophantine approximations of \(l\)-adic roots of unity.

A Remark on Primes of the Form \(2^{3n}a + 2^{2n}b+2^nc+1\). Necessary and sufficient conditions for the numbers in the title to be prime are given. The tests are well suited for practical purposes.