### Refine

#### Year of publication

- 2000 (3) (remove)

Mean field equations arise as steady state versions of convection-diffusion systems where the convective field is determined as solution of a Poisson equation whose right hand side is affine in the solutions of the convection-diffusion equations. In this paper we consider the repulsive coupling case for a system of 2 convection-diffusion equations. For general diffusivities we prove the existence of a unique solution of the mean field equation by a variational technique. Also we analyse the small-Debye-length limit and prove convergence to either the so-called charge-neutral case or to a double obstacle problem for the limiting potential depending on the data.

The paper concerns the equilibrium state of ultra small semiconductor devices. Due to the quantum drift diffusion model, electrons and holes behave as a mixture of charged quantum fluids. Typically the involved scaled Plancks constants of holes, \(\xi\), is significantly smaller than the scaled Plancks constant of electrons. By setting formally \(\xi=0\) a well-posed differential-algebraic system arises. Existence and uniqueness of an equilibrium solution is proved. A rigorous asymptotic analysis shows that this equilibrium solution is the limit (in a rather strong sense) of quantum systems as \(\xi \to 0\). In particular the ground state energies of the quantum systems converge to the ground state energy of the differential-algebraic system as \(\xi \to 0\).

An asymptotic preserving numerical scheme (with respect to diffusion scalings) for a linear transport equation is investigated. The scheme is adopted from a class of recently developped schemes. Stability is proven uniformly in the mean free path under a CFL type condition turning into a parabolic CFL condition in the diffusion limit.