### Refine

#### Document Type

- Preprint (2)
- Diploma Thesis (1)

#### Keywords

- combinatorial optimization (3) (remove)

We consider a variant of a knapsack problem with a fixed cardinality constraint. There are three objective functions to be optimized: one real-valued and two integer-valued objectives. We show that this problem can be solved efficiently by a local search. The algorithm utilizes connectedness of a subset of feasible solutions and has optimal run-time.

In an undirected graph G we associate costs and weights to each edge. The weight-constrained minimum spanning tree problem is to find a spanning tree of total edge weight at most a given value W and minimum total costs under this restriction. In this thesis a literature overview on this NP-hard problem, theoretical properties concerning the convex hull and the Lagrangian relaxation are given. We present also some in- and exclusion-test for this problem. We apply a ranking algorithm and the method of approximation through decomposition to our problem and design also a new branch and bound scheme. The numerical results show that this new solution approach performs better than the existing algorithms.

We consider multiple objective combinatiorial optimization problems in which the first objective is of arbitrary type and the remaining objectives are either bottleneck or k-max objective functions. While the objective value of a bottleneck objective is determined by the largest cost value of any element in a feasible solution, the kth-largest element defines the objective value of the k-max objective. An efficient solution approach for the generation of the complete nondominated set is developed which is independent of the specific combinatiorial problem at hand. This implies a polynomial time algorithm for several important problem classes like shortest paths, spanning tree, and assignment problems with bottleneck objectives which are known to be NP-hard in the general multiple objective case.