### Refine

#### Document Type

- Doctoral Thesis (2)
- Working Paper (2)

#### Keywords

- Festkörper (4) (remove)

#### Faculty / Organisational entity

The present thesis is concerned with the simulation of the loading behaviour of both hybrid lightweight structures and piezoelectric mesostructures, with a special focus on solid interfaces on the meso scale. Furthermore, an analytical review on bifurcation modes of continuum-interface problems is included. The inelastic interface behaviour is characterised by elastoplastic, viscous, damaging and fatigue-motivated models. For related numerical computations, the Finite Element Method is applied. In this context, so-called interface elements play an important role. The simulation results are reflected by numerous examples which are partially correlated to experimental data.

The particle flux produced by an obliquely incident Nd Q-switched pulse (20 ns) on a Ta target has been analysed with regard to its angular distribution resolved for both its neutral and ion components. The laser intensity has been varied in the range between about 10^10 - 10^11 W cm-2, which is appropriate for many low-irradiance applications. It is observed that, at all emission angles and for the whole range of laser intensities, the number of neutral species clearly dominates the composition of the particles. At 1.3 x 10^10 W cm-2 the total number of emitted particles is 4 x 10^14, scaling as E_L^¾ with the laser energy. While for relatively low laser energies the angular distribution shows the usual smooth cos-behaviour, an additional strong directive emission cone, superimposed upon the cos-distribution, develops if the laser energy is enhanced. Both the strength and the width strongly depend on the laser intensity. While at lower intensities a fit by a cos^n function with n ~ 10 seems appropriate, n increases to 26 at an intensity of 10^11 W cm-2 . It can be assumed that secondary energy transfer processes that are not yet fully understood are responsible for this anomalous emission.

Ion energy spectra of a laser-produced Ta plasma have been investigated as a function of the flight distance from the focus. The laser (Nd:YAG, 20 ns, 210 mJ) is incident obliquely (45°) and focused to an intensity of about 10^11 W cm-2. The changes in the ion distributions have been analysed for the Ta+ to Ta6+ ions in an expansion range 64 - 220 cm. With increasing distance from the target, a weak but monotonic decrease is observed for the total number of ions, which is essentially due to the decrease in the number of the more highly charged species. For the Ta+ and Ta2+ ions the net changes approximately cancel. A more sophisticated picture of the recombination dynamics is obtained, however, if the changes within individual groups of ions expanding with different velocities are compared. Here, in the same spectrum, both increasing and decreasing ion numbers can be observed. This can be interpreted as direct evidence of recombination and its dependence on temperature, density and charge.

In the present work the modelling and numerical treatment of discontinuities in thermo-mechanical solids is investigated and applied to diverse physical problems. From this topic a structure for this work results, which considers the formulation of thermo-mechanical processes in continua in the first part and which forms the mechanical and thermodynamical framework for the description of discontinuities and interfaces, that is performed in the second part. The representation of the modelling of solid materials bases on the detailed derivation of geometrically nonlinear kinematics, that yields different strain and stress measures for the material and spatial configuration. Accordingly, this results in different formulations of the mechanical and thermodynamical balance equations. On these foundations we firstly derive by means of the concepts of the plasticity theory an elasto-plastic prototype-model, that is extended subsequently. In the centre of interest is the formulation of damage models in consideration of rate-dependent material behaviour. In the next step follows the extension of the isothermal material models to thermo-mechanically coupled problems, whereby also the special case of adiabatic processes is discussed. Within the representation of the different constitutive laws, the importance is attached to their modular structure. Moreover, a detailed discussion of the isothermal and the thermo-mechanically coupled problem with respect to their numerical treatment is performed. For this purpose the weak forms with respect to the different configurations and the corresponding linearizations are derived and discretized. The derived material models are highlighted by numerical examples and also proved with respect to plausibility. In order to take discontinuities into account appropriate kinematics are introduced and the mechanical and thermodynamical balance equations have to be modified correspondingly. The numerical description is accomplished by so-called interface-elements, which are based on an adequate discretization. In this context two application fields are distinguished. On the one side the interface elements provide a tool for the description of postcritical processes in the framework of localization problems, which include material separation and therefore they are appropriate for the description of cutting processes. Here in turn one has to make the difference between the domain-dependent and the domain-independent formulation, which mainly differ in the definition of the interfacial strain measure. On the other side material properties are attached to the interfaces whereas the spatial extension is neglectable. A typical application of this type of discontinuities can be found in the scope of the modelling of composites, for instance. In both applications the corresponding thermo-mechanical formulations are derived. Finally, the different interface formulations are highlighted by some numerical examples and they are also proved with respect to plausibility.