### Refine

#### Year of publication

#### Keywords

- Mixture Models (2)
- changepoint test (2)
- hidden variables (2)
- mixture (2)
- nonparametric regression (2)
- time series (2)
- AR-ARCH (1)
- Autoregression (1)
- CUSUM statistic (1)
- EM algorith (1)

We introduce a class of models for time series of counts which include INGARCH-type models as well as log linear models for conditionally Poisson distributed data. For those processes, we formulate simple conditions for stationarity and weak dependence with a geometric rate. The coupling argument used in the proof serves as a role model for a similar treatment of integer-valued time series models based on other types of thinning operations.

We derive some asymptotics for a new approach to curve estimation proposed by Mr'{a}zek et al. cite{MWB06} which combines localization and regularization. This methodology has been considered as the basis of a unified framework covering various different smoothing methods in the analogous two-dimensional problem of image denoising. As a first step for understanding this approach theoretically, we restrict our discussion here to the least-squares distance where we have explicit formulas for the function estimates and where we can derive a rather complete asymptotic theory from known results for the Priestley-Chao curve estimate. In this paper, we consider only the case where the bias dominates the mean-square error. Other situations are dealt with in subsequent papers.

We consider the problem of estimating the conditional quantile of a time series at time \(t\) given observations of the same and perhaps other time series available at time \(t-1\). We discuss sieve estimates which are a nonparametric versions of the Koenker-Bassett regression quantiles and do not require the specification of the innovation law. We prove consistency of those estimates and illustrate their good performance for light- and heavy-tailed distributions of the innovations with a small simulation study. As an economic application, we use the estimates for calculating the value at risk of some stock price series.

Neural networks are now a well-established tool for solving classification and forecasting problems in financial applications (compare, e.g., Bol et al., 1996, Evans, 1997, Rehkugler and Zimmermann, 1994, Refenes 1995, and Refenes et al. 1996a) though many practioners are still suspicious against too evident success stories. One reason may be that the construction of an appropriate network which provides a reasonable solution to a complex data-analytic problem is rarely made explicit in the literature. In this paper, we try to contribute to filling this gap by discussing in detail the problem of dynamically allocating capital to various components of a currency portfolio in such a manner that the average gain will be larger than for certain benchmark portfolios. We base our solution on feedforward neural networks which are constructed employing various statistical model selection procedures described in, e.g., (Anders, 1997, or Refenes et al., 1996b). Neural networks which are used as the basis of trading strategies in finance should be assessed differently than in technical applications. The task is not to construct a network which provides good forecasts with respect to mean-square error of some quantities of interest or to provide good approximation of some given target values, but to achieve a good performance in economic terms. For portfolio allocation, the main goal is to achieve on the average a large return combined with a small risk. Therefore, we do not consider forecasts of the foreign exchange (FX-) rate time series using neural networks, but we try to get the allocation directly as the output of a network. Furthermore, we do not minimize some estimation or prediction error, but we try to maximize an economically meaningful performance measure, the risk-adjusted return, directly (compare also Heitkamp, 1996). In the subsequent chapter, we describe the details of the portfolio allocation problem. The following two chapters provide some technical information on how the networks were fitted to the available data and how the network inputs and outputs were selected. In chapter 5, finally, we discuss the promising results.

In this paper we consider a CHARME Model, a class of generalized mixture of nonlinear nonparametric AR-ARCH time series. We apply the theory of Markov models to derive asymptotic stability of this model. Indeed, the goal is to provide some sets of conditions under which our model is geometric ergodic and therefore satisfies some mixing conditions. This result can be considered as the basis toward an asymptotic theory for our model.

In this paper, we demonstrate the power of functional data models for a statistical analysis of stimulus-response experiments which is a quite natural way to look at this kind of data and which makes use of the full information available. In particular, we focus on the detection of a change in the mean of the response in a series of stimulus-response curves where we also take into account dependence in time.

In this paper we derive nonparametric stochastic volatility models in discrete time. These models generalize parametric autoregressive random variance models, which have been applied quite successfully to nancial time series. For the proposed models we investigate nonparametric kernel smoothers. It is seen that so-called nonparametric deconvolution estimators could be applied in this situation and that consistency results known for nonparametric errors- in-variables models carry over to the situation considered herein.

We consider the problem of estimating the conditional quantile of a time series at time t given observations of the same and perhaps other time series available at time t-1. We discuss an estimate which we get by inverting a kernel estimate of the conditional distribution function, and prove its asymptotic normality and uniform strong consistency. We illustrate the good performance of the estimate for light and heavy-tailed distributions of the innovations with a small simulation study.