## Doctoral Thesis

### Refine

#### Year of publication

- 2014 (47) (remove)

#### Document Type

- Doctoral Thesis (47) (remove)

#### Language

- English (47) (remove)

#### Keywords

- Activity Recognition, Wearable Computing, Minimal Training, Unobtrusive Instrumentations (1)
- Activity recognition (1)
- Adaptive Data Structure (1)
- AhRR (1)
- Algorithm (1)
- Boosting (1)
- CYP1A1 (1)
- Classification (1)
- Closure (1)
- Code Generation (1)
- Computer graphics (1)
- Cycle Accuracy (1)
- DL-PCBs (1)
- Dataset (1)
- Dekonsolidierung (1)
- Dioxin (1)
- Direct Numerical Simulation (1)
- Discrete Event Simulation (DES) (1)
- EROD (1)
- Eikonal equation (1)
- Endlicher Automat (1)
- Evaluation (1)
- Feasibility study (1)
- Formale Grammatik (1)
- Formale Sprache (1)
- Grouping by similarity (1)
- Hypergraph (1)
- IP-XACT (1)
- Ileostomy (1)
- Immunoblot (1)
- Intensity estimation (1)
- Interactive decision support systems (1)
- Invariante (1)
- Kellerautomat (1)
- Knowledge Management (1)
- LIR-Tree (1)
- Machine learning (1)
- Microarray (1)
- Mobile system (1)
- Mustererkennung (1)
- Noise Control, Feature Extraction, Speech Recognition (1)
- OCR (1)
- PCDD/Fs (1)
- Partial Differential Equations (1)
- Pedestrian FLow (1)
- Perceptual grouping (1)
- Personalisation (1)
- Pervasive health (1)
- Physical activity monitoring (1)
- Recommender Systems (1)
- Response Priming (1)
- Self-splitting objects (1)
- Semantic Web (1)
- Semantic Wikis (1)
- Shared Resource Modeling (1)
- Stokes Equations (1)
- Sustainability (1)
- Symmetry (1)
- SystemC (1)
- TIPARP (1)
- Temporal Decoupling (1)
- Tensorfeld (1)
- Thermoplast (1)
- Topology visualization (1)
- Transaction Level Modeling (TLM) (1)
- Ubiquitous system (1)
- Urban Water Supply (1)
- Volume rendering (1)
- Water resources (1)
- Wearable computing (1)
- XMCD (1)
- aryl hydrocarbon receptor (1)
- bioavailability (1)
- cobalt (1)
- coffee (1)
- dioxin-like compounds (1)
- fatigue (1)
- flow cytometry (1)
- gas phase (1)
- geographic information systems (1)
- geology (1)
- hypergraph (1)
- invariant (1)
- iron (1)
- magnetism (1)
- metal cluster (1)
- moment (1)
- nickel (1)
- optimization (1)
- orbit (1)
- peripheral blood mononuclear cells (1)
- point cloud (1)
- polyphenol (1)
- rat liver cell systems (1)
- relative effect potencies (1)
- single molecule magnet (1)
- spin (1)
- tensor (1)
- tensorfield (1)
- terrain rendering (1)
- tetrachlorodibenzo-p-dioxin (1)
- toxic equivalency factor (TEF) concept (1)
- vectorfield (1)
- virtual reality (1)
- whole genome microarray analysis (1)

#### Faculty / Organisational entity

The study addresses the effect of multiple jet passes and other parameters namely feedrate, water pressure and standoff distance in waterjet peening of metallic
surfaces. An analysis of surface integrity was used to evaluate the performance of
different parameters in the process. An increase in the number of jet passes and
pressure leads to a higher roughness and more erosion and also a higher hardness.
In contrast, the feedrate shows a reverse effect on those surface characteristics.
There exists a specific value of standoff distance that results in the maximum surface
roughness, erosion as well as hardness. Analysis of the surface microstructure gave
a good insight into the mechanism material removal process involving initial and
evolved damage. Also, the waterjet peening process was optimized based on the
design of experiment approach. The developed empirical models had shown
reasonable correlations between the measured and predicted responses. A proper selection of waterjet peening parameters can be formulated to be used in practical
works.

ABSTRACT
"Spin and orbital contribution to the magnetic moment of transition metal clusters and complexes"
The spin and orbital contributions to the magnetic moments of isolated iron \(Fe_n^+\) \((7 ≤ n ≤ 18)\), cobalt \(Co_n^+\) \((8 ≤ n ≤ 22)\) and nickel \(Ni_n^+\) \((7 ≤ n ≤ 17)\) clusters were investigated. An experimental access to both contributions is possible by the application of x-ray magnetic circular dichroism (XMCD) spectroscopy. XMCD spectroscopy is based on x-ray absorption spectroscopy (XAS). It exploits the fact that for a magnetic sample the resonant absorption cross sections for negative and positive circular polarized x-rays differ for the transition from a spin orbit split ground state to the valence level. The resulting dichroic effects contain the information about the magnetism of the investigated sample. It can be extracted from the experimental spectrum via application of the so called sum rules. However, only the projections of the magnetic moments onto the quantization axis are experimentally accessible which corresponds to the magnetization of the sample.
We developed a method to apply XMCD spectroscopy to isolated clusters in the gas phase. A modified Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometer was used to record the XA spectra in Total Ion Yield (TIY) mode, i.e. by recording the fragmentation intensity of the clusters in dependence of x-ray energy. The clusters can be considered to be a superparamagnetic ensemble. Thus, the magnetization follows a Langevin curve. The intrinsic magnetic moments can be calculated by Langevin correction of the experimental magnetic moments because the cluster temperature and the magnetic field are known.
The spin and the orbital magnetic moments are enhanced compared to the respective bulk values for all three investigated elements. The enhancement of the orbital contribution is more pronounced, by about a factor 3 - 4 compared to the bulk, than for the spin magnetic moment. However, if compared to the atomic value, both contributions are quenched. The orbital magnetic moment only amounts to about 10 - 15 % of the atomic value while the spin retains about 80 % of its atomic value. If the magnetic moments found for the clusters are put into perspective with respect to the atomic and bulk values by means of scaling laws, it becomes evident that both contributions follow different interpolations between the atomic and bulk value. The spin follows the well-known trend
\(n^{-1/3} = 1/(cluster radius)\) (n = number of atoms per cluster, assumption of a spherical particle). This trend relates to the ratio of surface to inner atoms in spherical particle. Hence, our interpretation is that the spin magnetic moment seems to follow the surface area of the cluster. On the other hand, the orbital magnetic moment follows \(1/n = 1/(cluster volume)\).
First XA spectra recorded with circularly polarized x-rays of a Single Molecule Magnet (SMM) \([Fe_4Ln_2(N_3)_4(Htea)_4(piv_6)]\) (Ln = Gd, Tb; \(H_3tea\) = triethanolamine, Hpiv = pivalic acid) are presented.

This thesis combines mass spectrometric studies on ionic dicarboxylic acids and transition metal cluster adsorbate complexes. IR-MPD spectra of protonated and deprotonated aliphatic and aromatic dicarboxylic acids provide insights in the nature of intramolecular hydrogen bonding. Investigations of their fragmentation behavior are supported by MP2 calculations. Prior work on cobalt transition metal clusters is extended to iron and nickel and three cobalt alloys have been studied.

We consider two major topics in this thesis: spatial domain partitioning which serves as a framework to simulate creep flows in representative volume elements.
First, we introduce a novel multi-dimensional space partitioning method. A new type of tree combines the advantages of the Octree and the KD-tree without having their disadvantages. We present a new data structure allowing local refinement, parallelization and proper restriction of transition ratios between nodes. Our technique has no dimensional restrictions at all. The tree's data structure is defined by a topological algebra based on the symbols \( A = \{ L, I, R \} \) that encode the partitioning steps. The set of successors is restricted such that each node has the partition of unity property to partition domains without overlap. With our method it is possible to construct a wide choice of spline spaces to compress or reconstruct scientific data such as pressure and velocity fields and multidimensional images. We present a generator function to build a tree that represents a voxel geometry. The space partitioning system is used as a framework to allow numerical computations. This work is triggered by the problem of representing, in a numerically appropriate way, huge three-dimensional voxel geometries that could have up to billions of voxels. These large datasets occure in situations where it is needed to deal with large representative volume elements (REV).
Second, we introduce a novel approach of variable arrangement for pressure and velocity to solve the Stokes equations. The basic idea of our method is to arrange variables in a way such that each cell is able to satisfy a given physical law independently from its neighbor cells. This is done by splitting velocity values to a left and right converging component. For each cell we can set up a small linear system that describes the momentum and mass conservation equations. This formulation allows to use the Gauß-Seidel algorithm to solve the global linear system. Our tree structure is used for spatial partitioning of the geometry and provides a proper initial guess. In addition, we introduce a method that uses the actual velocity field to refine the tree and improve the numerical accuracy where it is needed. We developed a novel approach rather than using existing approaches such as the SIMPLE algorithm, Lattice-Boltzmann methods or Exlicit jump methods since they are suited for regular grid structures. Other standard CFD approaches extract surfaces and creates tetrahedral meshes to solve on unstructured grids thus can not be applied to our datastructure. The discretization converges to the analytical solution with respect to grid refinement. We conclude a high strength in computational time and memory for high porosity geometries and a high strength in memory requirement for low porosity geometries.

This PhD-Thesis deals with the calculation and application of a new class of invariants, that can be used to recognize patterns in tensor fields (i.e. scalar fields, vector fields und matrix fields), and by the composition of scalar fields with delta-functions also to point-clouds.
In the first chapter an overview over already existing invariants is given.
In the second chapter the general definition of the new invariants is given:
starting with a tensor field a set of moment tensor is created via folding in tensor-product manner with different orders of the tensor product of the positional vector. From these, rotational invariant values are calculated via contraction of tensor products. An algorithm to get a complete and independent set of invariants from a given moment tensor set is described. Furthermore methods to make these sets of invariants invariant against translation, rotation, scaling, and affine transformation.
In the third chapter, a method to optimize the calculation of these sets of invariants is described: every invariant can be modeled as undirected graph comprising multiple sub-graphs representing partially contracted tensor products of the moment tensors.
The composition of the sets of invariants is optimized by a clever choice of the decomposition into sub-graphs, all paths creating a hyper-graph of sub-graphs where each node describes a composition step. Finally, C++-source-code is created, which optimized using the symmetry of the different tensors and tensor-products, and a comparison of the effort to other calculation methods of invariants is given.
The fourth chapter describes the application of the invariants to object recognition in point-clouds from 3D-scans. To do this, the invariants of sub-sets of point-clouds are stored for every known object. Afterwards, invariants are calculated from an unknown point-cloud and tried to find them in the database to assign it to one of the known objects. Benchmarks using three 3D-object databases are made testing time and recognition rate.

This thesis discusses several applications of computational topology to the visualization
of scalar fields. Scalar field data come from different measurements and simulations. The
intrinsic properties of this kind of data, which make the visualization of it to a complicated
task, are the large size and presence of noise. Computational topology is a powerful tool
for automatic feature extraction, which allows the user to interpret the information contained
in the dataset in a more efficient way. Utilizing it one can make the main purpose of
scientific visualization, namely extracting knowledge from data, a more convenient task.
Volume rendering is a class of methods designed for realistic visual representation of 3D
scalar fields. It is used in a wide range of applications with different data size, noise
rate and requirements on interactivity and flexibility. At the moment there is no known
technique which can meet the needs of every application domain, therefore development
of methods solving specific problems is required. One of such algorithms, designed for
rendering of noisy data with high frequencies is presented in the first part of this thesis.
The method works with multidimensional transfer functions and is especially suited for
functions exhibiting sharp features. Compared with known methods the presented algorithm
achieves better visual quality with a faster performance in presence of mentioned
features. An improvement on the method utilizing a topological theory, Morse theory, and
a topological construct, Morse-Smale complex, is also presented in this part of the thesis.
The improvement allows for performance speedup at a little precomputation and memory
cost.
The usage of topological methods for feature extraction on a real world dataset often
results in a very large feature space which easily leads to information overflow. Topology
simplification is designed to reduce the number of features and allow a domain expert
to concentrate on the most important ones. In the terms of Morse theory features are
represented by critical points. An importance measure which is usually used for removing
critical points is called homological persistence. Critical points are cancelled pairwise
according to their homological persistence value. In the presence of outlier-like noise
homological persistence has a clear drawback: the outliers get a high importance value
assigned and therefore are not being removed. In the second part of this thesis a new
importance measure is presented which is especially suited for data with outliers. This
importance measure is called scale space persistence. The algorithm for the computation
of this measure is based on the scale space theory known from the area of computer
vision. The development of a critical point in scale space gives information about its
spacial extent, therefore outliers can be distinguished from other critical points. The usage
of the presented importance measure is demonstrated on a real world application, crater
identification on a surface of Mars.
The third part of this work presents a system for general interactive topology analysis
and exploration. The development of such a system is motivated by the fact that topological
methods are often considered to be complicated and hard to understand, because
application of topology for visualization requires deep understanding of the mathematical
background behind it. A domain expert exploring the data using topology for feature
extraction needs an intuitive way to manipulate the exploration process. The presented
system is based on an intuitive notion of a scene graph, where the user can choose and
place the component blocks to achieve an individual result. This way the domain expert
can extract more knowledge from given data independent on the application domain. The
tool gives the possibility for calculation and simplification of the underlying topological
structure, Morse-Smale complex, and also the visualization of parts of it. The system also
includes a simple generic query language to acquire different structures of the topological
structure at different levels of hierarchy.
The fourth part of this dissertation is concentrated on an application of computational
geometry for quality assessment of a triangulated surface. Quality assessment of a triangulation
is called surface interrogation and is aimed for revealing intrinsic irregularities
of a surface. Curvature and continuity are the properties required to design a visually
pleasing geometric object. For example, a surface of a manufactured body usually should
be convex without bumps of wiggles. Conventional rendering methods hide the regions
of interest because of smoothing or interpolation. Two new methods which are presented
here: curvature estimation using local fitting with B´ezier patches and computation of reflection
lines for visual representation of continuity, are specially designed for assessment
problems. The examples and comparisons presented in this part of the thesis prove the
benefits of the introduced algorithms. The methods are also well suited for concurrent visualization
of the results from simulation and surface interrogation to reveal the possible
intrinsic relationship between them.

Multilevel Constructions
(2014)

The thesis consists of the two chapters.
The first chapter is addressed to make a deep investigation of the MLMC method. In particular we take an optimisation view at the estimate. Rather than fixing the number of discretisation points \(n_i\) to be a geometric sequence, we are trying to find an optimal set up for \(n_i\) such that for a fixed error the estimate can be computed within a minimal time.
In the second chapter we propose to enhance the MLMC estimate with the weak extrapolation technique. This technique helps to improve order of a weak convergence of a scheme and as a result reduce CC of an estimate. In particular we study high order weak extrapolation approach, which is know not be inefficient in the standard settings. However, a combination of the MLMC and the weak extrapolation yields an improvement of the MLMC.

If an automated system is tasked to provide services such as search or clustering of information on an information repository, the quality of the output depends a lot on the information that is available to the system in machine-readable form. Simple text, for example, is machine-readable only in a very limited sense. Advanced services typically need to derive other representations of the text (e.g., sets of keywords) as input for their core algorithms. Some services might need information that cannot be derived from the resource in question alone, but is available as separate metadata only, such as usage information. Annotations can be used to carry this information.
This thesis focuses on so-called ontology-based annotations. In contrast to other forms of annotations such as Tags (arbitrary strings that users can assign to resources), ontology-based annotations conform to a predefined data structure and class hierarchy. An advantage of this approach is that rich information can be stored in a well-structured way in the annotations; a drawback is that users need to be familiar with the hierarchy and other design decisions of the underlying ontology used for annotations.
Two scenarios are considered in this thesis:
First, a document-based scenario in which text annotations are used to represent both information about the text content and usage and user context information in a multi-user setting with mostly objective annotation criteria; second, a resource-based scenario whose annotation model focuses on multi-user settings with subjective annotation criteria, using (dis-)similarities in user annotations to derive user similarity metrics, and building personalized views from this information.
Finally, the prototypical systems that have been developed throughout this thesis get evaluated, proving the concepts presented in this thesis.

As the complexity of embedded systems continuously rises, their development becomes more and more challenging. One technique to cope with this complexity is the employment of virtual prototypes. The virtual prototypes are intended to represent the embedded system’s properties on different levels of detail like register transfer level or transaction level. Virtual prototypes can be used for different tasks throughout the development process. They can act as executable specification, can be used for architecture exploration, can ease system integration, and allow for pre- and post-silicon software development and verification. The optimization objectives for virtual prototypes and their creation process are manifold. Finding an appropriate trade-off between the simulation accuracy, the simulation performance, and the implementation effort is a major challenge, as these requirements are contradictory.
In this work, two new and complementary techniques for the efficient creation of accurate and high-performance SystemC based virtual prototypes are proposed: Advanced Temporal Decoupling (ATD) and Transparent Transaction Level Modeling (TTLM). The suitability for industrial environments is assured by the employment of common standards like SystemC TLM-2.0 and IP-XACT.
Advanced Temporal Decoupling enhances the simulation accuracy while retaining high simulation performance by allowing for cycle accurate simulation in the context of SystemC TLM-2.0 temporal decoupling. This is achieved by exploiting the local time warp arising in SystemC TLM-2.0 temporal decoupled models to support the computation of resource contention effects. In ATD, accesses to shared resource are managed by Temporal Decoupled Semaphores (TDSems) which are integrated into the modeled shared resources. The set of TDSems assures the correct execution order of shared resource accesses and incorporates timing effects resulting from shared resource access execution and resource conflicts. This is done by dynamically varying the data granularity of resource accesses based on information gathered from the local time warp. ATD facilitates modeling of a wide range of resource and resource access properties like preemptable and non-preemptable accesses, synchronous and asynchronous accesses, multiport resources, dynamic access priorities, interacting and cascaded resources, and user specified schedulers prioritizing simultaneous resource accesses.
Transparent Transaction Level Modeling focuses on the efficient creation of virtual prototypes by reducing the implementation effort and consists of a library and a code generator. The TTLM library adds a layer of convenience functions to ATD comprising various application programming interfaces for inter module communication, virtual prototype configuration and run time information extraction. The TTLM generator is used to automatically generate the structural code of the virtual prototype from the formal hardware specification language IP-XACT.
The applicability and benefits of the presented techniques are demonstrated using an image processing centric automotive application. Compared to an existing cycle accurate SystemC model, the implementation effort can be reduced by approximately 50% using TTLM. Applying ATD, the simulation performance can be increased by a factor of up to five while retaining cycle accuracy.

In the first part of this thesis we study algorithmic aspects of tropical intersection theory. We analyse how divisors and intersection products on tropical cycles can actually be computed using polyhedral geometry. The main focus is the study of moduli spaces, where the underlying combinatorics of the varieties involved allow a much more efficient way of computing certain tropical cycles. The algorithms discussed here have been implemented in an extension for polymake, a software for polyhedral computations.
In the second part we apply the algorithmic toolkit developed in the first part to the study of tropical double Hurwitz cycles. Hurwitz cycles are a higher-dimensional generalization of Hurwitz numbers, which count covers of \(\mathbb{P}^1\) by smooth curves of a given genus with a certain fixed ramification behaviour. Double Hurwitz numbers provide a strong connection between various mathematical disciplines, including algebraic geometry, representation theory and combinatorics. The tropical cycles have a rather complex combinatorial nature, so it is very difficult to study them purely "by hand". Being able to compute examples has been very helpful
in coming up with theoretical results. Our main result states that all marked and unmarked Hurwitz cycles are connected in codimension one and that for a generic choice of simple ramification points the marked cycle is a multiple of an irreducible cycle. In addition we provide computational examples to show that this is the strongest possible statement.

Enhanced information processing of phobic natural images in participants with specific phobias
(2014)

From an evolutionary point of view, it can be assumed that visual processing and rapid detection of potentially dangerous stimuli in the environment (e.g., perilous animals) is highly adaptive for all humans. In the present dissertation, I address three research questions; (1) Is information processing of threatening stimuli enhanced in individuals with specific phobias? (2) Are there any differences between the different types of phobia (e.g., spider phobia vs. snake phobia)? (3) Is the frequently reported attentional bias of individuals with specific phobias - which may contribute to an enhancement in information processing – also detectable in a prior entry paradigm? In Experiments 1 to 3 of the present thesis non-anxious control, spider-fearful, snake-fearful, and blood-injection-injury-fearful participants took part in the study. We applied in each experiment a response priming paradigm which has a strong theoretical (cf. rapid-chase theory; Schmidt, Niehaus, & Nagel, 2006; Schmidt, Haberkamp, Veltkamp et al., 2011) as well as empirical background (cf. Schmidt, 2002). We show that information processing in fearful individuals is indeed enhanced for phobic images (i.e., spiders for spider-fearful participants; injuries for blood-injury-injection(BII)-fearful individuals). However, we found marked differences between the different types of phobia. In Experiment 1 and 2 (Chapter 2 and 3), spiders had a strong and specific influence in the group of spider-fearful individuals: Phobic primes entailed the largest priming effects, and phobic targets accelerated responses, both effects indicating speeded response activation by phobic images. In snake-fearful participants (Experiment 1, Chapter 2), this processing enhancement for phobic material was less pronounced and extended to both snake and spider images. In Experiment 3 (Chapter 4), we demonstrated that early information processing for pictures of small injuries is also enhanced in BII-fearful participants, even though BII fear is unique in that BII-fearful individuals show opposite physiological reactions when confronted with the phobic stimulus compared to individuals with animal phobias. These results show that already fast visuomotor responses are further enhanced in spider- and BII-fearful participants. Results give evidence that responses are based on the first feedforward sweep of neuronal activation proceeding through the visuomotor system. I propose that the additional enhancement in spider- and BII-fearful individuals depend on a specific hardwired binding of elementary features belonging to the phobic object in fearful individuals (i.e., effortless recognition of the respective phobic object via hardwired neuronal conjunctions). I suggest that these hardwired conjunctions developed due to long-term perceptual learning processes. We also investigate the frequently reported attentional bias of phobic individuals and showed that this bias is detectable in temporal order judgments using a prior entry paradigm. I assume that perceptual learning processes might also strengthen the attentional bias, for example, by providing a more salient bottom-up signal that draws attention involuntarily. In sum, I conclude that (1) early information processing of threatening stimuli is indeed enhanced in individuals with specific phobias but that (2) differences between divers types of phobia exist (i.e., spider- and BII-fearful participants show enhanced information of the respective phobic object; though, snake-fearful participants show no specific information processing enhancement of snakes); (3) the frequently reported attentional bias of spider-fearful individuals is also detectable in a prior entry paradigm.

Safety analysis is of ultimate importance for operating Nuclear Power Plants (NPP). The overall
modeling and simulation of physical and chemical processes occuring in the course of an accident
is an interdisciplinary problem and has origins in fluid dynamics, numerical analysis, reactor tech-
nology and computer programming. The aim of the study is therefore to create the foundations
of a multi-dimensional non-isothermal fluid model for a NPP containment and software tool based
on it. The numerical simulations allow to analyze and predict the behavior of NPP systems under
different working and accident conditions, and to develop proper action plans for minimizing the
risks of accidents, and/or minimizing the consequences of possible accidents. A very large number
of scenarios have to be simulated, and at the same time acceptable accuracy for the critical param-
eters, such as radioactive pollution, temperature, etc., have to be achieved. The existing software
tools are either too slow, or not accurate enough. This thesis deals with developing customized al-
gorithm and software tools for simulation of isothermal and non-isothermal flows in a containment
pool of NPP. Requirements to such a software are formulated, and proper algorithms are presented.
The goal of the work is to achieve a balance between accuracy and speed of calculation, and to
develop customized algorithm for this special case. Different discretization and solution approaches
are studied and those which correspond best to the formulated goal are selected, adjusted, and when
possible, analysed. Fast directional splitting algorithm for Navier-Stokes equations in complicated
geometries, in presence of solid and porous obstales, is in the core of the algorithm. Developing
suitable pre-processor and customized domain decomposition algorithms are essential part of the
overall algorithm amd software. Results from numerical simulations in test geometries and in real
geometries are presented and discussed.

Embedded systems, ranging from very simple systems up to complex controllers, may
nowadays have quite challenging real-time requirements. Many embedded systems are reactive
systems that have to respond to environmental events and have to guarantee certain real-time
constrain. Their execution is usually divided into reaction steps, where in each step, the
system reads inputs from the environment and reacts to these by computing corresponding
outputs.
The synchronous Model of Computation (MoC) has proven to be well-suited for the
development of reactive real-time embedded systems whose paradigm directly reflects the
reactive nature of the systems it describes. Another advantage is the availability of formal
verification by model checking as a result of the deterministic execution based on a formal
semantics. Nevertheless, the increasing complexity of embedded systems requires to compensate
the natural disadvantages of model checking that suffers from the well-known state-space
explosion problem. It is therefore natural to try to integrate other verification methods with
the already established techniques. Hence, improvements to encounter these problems are
required, e.g., appropriate decomposition techniques, which encounter the disadvantages
of the model checking approach naturally. But defining decomposition techniques for synchronous
language is a difficult task, as a result of the inherent parallelism emerging from
the synchronous broadcast communication.
Inspired by the progress in the field of desynchronization of synchronous systems by
representing them in other MoCs, this work will investigate the possibility of adapting and use
methods and tools designed for other MoC for the verification of systems represented in the
synchronous MoC. Therefore, this work introduces the interactive verification of synchronous
systems based on the basic foundation of formal verification for sequential programs – the
Hoare calculus. Due to the different models of computation several problems have to be
solved. In particular due to the large amount of concurrency, several parts of the program
are active at the same point of time. In contrast to sequential programs, a decomposition
in the Hoare-logic style that is in some sense a symbolic execution from one control flow
location to another one requires the consideration of several flows here. Therefore, different
approaches for the interactive verification of synchronous systems are presented.
Additionally, the representation of synchronous systems by other MoCs and the influence
of the representation on the verification task by differently embedding synchronous system
in a single verification tool are elaborated.
The feasibility is shown by integration of the presented approach with the established
model checking methods by implementing the AIFProver on top of the Averest system.

Pedestrian Flow Models
(2014)

There have been many crowd disasters because of poor planning of the events. Pedestrian models are useful in analysing the behavior of pedestrians in advance to the events so that no pedestrians will be harmed during the event. This thesis deals with pedestrian flow models on microscopic, hydrodynamic and scalar scales. By following the Hughes' approach, who describes the crowd as a thinking fluid, we use the solution of the Eikonal equation to compute the optimal path for pedestrians. We start with the microscopic model for pedestrian flow and then derive the hydrodynamic and scalar models from it. We use particle methods to solve the governing equations. Moreover, we have coupled a mesh free particle method to the fixed grid for solving the Eikonal equation. We consider an example with a large number of pedestrians to investigate our models for different settings of obstacles and for different parameters. We also consider the pedestrian flow in a straight corridor and through T-junction and compare our numerical results with the experiments. A part of this work is devoted for finding a mesh free method to solve the Eikonal equation. Most of the available methods to solve the Eikonal equation are restricted to either cartesian grid or triangulated grid. In this context, we propose a mesh free method to solve the Eikonal equation, which can be applicable to any arbitrary grid and useful for the complex geometries.

When stimulus and response overlap in a choice-reaction task, enhanced performance can be observed. This effect, the so-called Stimulus-Response Compatibility (SRC) has been shown to appear for a variety of different stimulus features such as numerical or physical size, luminance, or pitch height. While many of these SRC effects have been investigated in an isolated manner, only fewer studies focus on possible interferences when more than one stimulus dimension is varied. The present thesis investigated how the SRC effect of pitch heights, the so-called SPARC effect (Spatial Pitch Associations of Response Codes), is influenced by additionally varied stimulus information. In Study 1, the pitch heights of presented tones were varied along with timbre categories under two different task and pitch range conditions and with two different response alignments. Similarly, in Study 2, pitch heights as well as numerical values were varied within sung numbers under two different task conditions. The results showed simultaneous SRC effects appearing independently of each other in both studies: In Study 1, an expected SRC effect of pitch heights with horizontal responses (i.e., a horizontal SPARC effect) was observed. More interestingly, an additional and unexpected SRC effect of timbre with response sides presented itself independently of this SPARC effect. Similar results were obtained in Study 2: Here, an SRC effect for pitch heights (SPARC) and an SRC effect for numbers (i.e., SNARC or Spatial Numerical Associations of Response Codes, respectively) were observed and again the effects did not interfere with each other. Thus, results indicate that SPARC with horizontal responses does not interfere with SRC effects of other, simultaneously varied stimulus dimensions. These findings are discussed within the principle of polarity correspondence and the dimensional overlap model as theoretical accounts for SRC effects. In sum, it appears that the different types of information according to varied stimulus dimensions enter the decision stage of stimulus processing from separate channels.

A positive affection of human health by nutrition is of high interest, especially for bioactive compounds which are consumed daily in high amounts. This is the case for chlorogenic acids (CGA) ingested by coffee. This molecule class is associated with several possible beneficial health effects observed in vitro that strongly depend on their bioavailability. So far factors influencing bioavailability of CGA such as dose, molecule structure and site of absorption haven´t been investigated sufficiently.
Therefore we performed an in vivo dose-response study with ileostomists, who consumed three different nutritional doses of CGA ingested as instant coffee (4,525 (HIGH); 2,219 (MEDIUM); 1,053 (LOW) μmol CGA). CGA concentrations were determined in ileal fluid, urine and plasma. Furthermore, we conducted an ex vivo study with pig jejunal mucosa using the Ussing chamber model to confirm the in vivo observations. Individual transfer rates of CGA from coffee were investigated, namely: caffeoylquinic acid (CQA), feruloylquinic acid (FQA), caffeic acid (CA), dicaffeoylquinic acid (diCQA) and QA at physiological concentrations (0.2–3.5 mM). Samples were analyzed by HPLC-DAD, -ESI-MS and -ESI-MS/MS.
About ⅔ of the ingested CGA by coffee consumption were available in the colon dose independent. Nevertheless, the results showed that the consumption of higher CGA doses leads to a faster ileal excretion. This corresponds to a plasma AUC0-8h for CGA and metabolites of 4,412 ± 751 nM*h0-8-1 (HIGH), 2,394 ± 637 nM*h0-8-1 (MEDIUM) and 1,782 ± 731 nM*h0-8-1 (LOW) respectively, and a renal excretion of 8.0 ± 4.9% (HIGH), 12.1 ± 6.7% (MEDIUM) and 14.6 ± 6.8% (LOW). Moreover interindividual differences in gastrointestinal transit times were related to differences in total CGA absorption. Thus the variety of patient´s physiology is a decisive bioavailability factor for CGA uptake. This is corroborated ex vivo by a direct proportional relationship of incubation time with absorbed CGA amount.
The consumption of high CGA doses influences the metabolism pattern as an increasing glucuronidation was observed with consumption of increasing CGA doses. However, the different CGA doses have only minor effects on the overall bioavailability which was confirmed ex vivo by a non-saturable passive diffusion of 5-CQA. Furthermore, we identified in the Ussing chamber an active efflux secretion for 5-CQA that decreases its bioavailability and the physicochemical properties of the CGA subgroups as an important bioavailability factor. Transferred amount in increasing order: diCQA, trace amounts; CQA ≈ 1%; CA ≈ 1.5%; FQA ≈ 2%; and QA ≈ 4%.
Altogether, the consumption of increasing CGA doses by coffee had a minor effect on oral bioavailability in ileostomists, such as a slightly increased glucuronidation. Thus, the consumption of high amounts of CGA from coffee in the daily diet is not limiting the CGA concentrations at the site of possible health effects in the human body. However, according to the patient´s physiology the interindividual gastrointestinal transit time which is possibly influenced by dose is influencing CGA bioavailability. Moreover, ex vivo CGA absorption is governed by diffusion as an absorption mechanism corroborating an unsaturable uptake in vivo and by the individual physicochemical properties of CGA.

Researchers and analysts in modern industrial and academic environments are faced with a daunting amount of multivariate data. While there has been significant development in the areas of data mining and knowledge
discovery, there is still the need for improved visualizations and generic solutions. The state-of-the-art in visual analytics and exploratory data visualization is to incorporate more profound analysis methods while focusing on improving interactive abilities, in order to support data analysts in gaining new insights through visual exploration and hypothesis building.
In the research field of exploratory data visualization, this thesis contributes new approaches in dimension reduction that tackle a number of shortcomings in state-of-the-art methods, such as interpretability and ambiguity. By combining methods from several disciplines, we describe how ambiguity can be countered effectively by visualizing coordinate values within a lower-dimensional embedding, thereby focusing on the display of the structural composition of high-dimensional data and on an intuitive depiction of inherent global relationships. We also describe how properties and alignment of high-dimensional manifolds can be analyzed in different levels of detail by means of a self-embedding hierarchy of local projections, each using full degree of freedom, while keeping the global context.
To the application field of air quality research, the thesis provides novel means for the research of aerosol source contributions. Triggered by this particularly challenging application problem, we instigate a new research direction in the area of visual analytics by describing a methodology to model-based visual analysis that (i) allows the scientist to be “in the loop” of computations and (ii) enables him to verify and control the analysis process, in order to steer computations towards physical meaning. Careful reflection of our work in this application has led us to derive key design choices that underlie and transcend beyond application-specific solutions. As a result, we describe a general design methodology to computing parameters of a pre-defined analytical model that map to multivariate data. Core applications areas that can benefit from our approach are within engineering disciplines, such as civil, chemical, electrical, and mechanical engineering, as well as in geology, physics, and biology.

Three dimensional (3d) point data is used in industry for measurement and reverse engineering. Precise point data is usually acquired with triangulating laser scanners or high precision structured light scanners. Lower precision point data is acquired by real-time structured light devices or by stereo matching with multiple cameras. The basic principle of all these methods is the so-called triangulation of 3d coordinates from two dimensional (2d) camera images.
This dissertation contributes a method for multi-camera stereo matching that uses a system of four synchronized cameras. A GPU based stereo matching method is presented to achieve a high quality reconstruction at interactive frame rates. Good depth resolution is achieved by allowing large disparities between the images. A multi level approach on the GPU allows a fast processing of these large disparities. In reverse engineering, hand-held laser scanners are used for the scanning of complex shaped objects. The operator of the scanner can scan complex regions slower, multiple times, or from multiple angles to achieve a higher point density. Traditionally, computer aided design (CAD) geometry is reconstructed in a separate step after the scanning. Errors or missing parts in the scan prevent a successful reconstruction. The contribution of this dissertation is an on-line algorithm that allows the reconstruction during the scanning of an object. Scanned points are added to the reconstruction and improve it on-line. The operator can detect the areas in the scan where the reconstruction needs additional data.
First, the point data is thinned out using an octree based data structure. Local normals and principal curvatures are estimated for the reduced set of points. These local geometric values are used for segmentation using a region growing approach. Implicit quadrics are fitted to these segments. The canonical form of the quadrics provides the parameters of basic geometric primitives.
An improved approach uses so called accumulated means of local geometric properties to perform segmentation and primitive reconstruction in a single step. Local geometric values can be added and removed on-line to these means to get a stable estimate over a complete segment. By estimating the shape of the segment it is decided which local areas are added to a segment. An accumulated score estimates the probability for a segment to belong to a certain type of geometric primitive. A boundary around the segment is reconstructed using a growing algorithm that ensures that the boundary is closed and avoids self intersections.

This thesis is devoted to the computational aspects of intersection theory and enumerative geometry. The first results are a Sage package Schubert3 and a Singular library schubert.lib which both provide the key functionality necessary for computations in intersection theory and enumerative geometry. In particular, we describe an alternative method for computations in Schubert calculus via equivariant intersection theory. More concretely, we propose an explicit formula for computing the degree of Fano schemes of linear subspaces on hypersurfaces. As a special case, we also obtain an explicit formula for computing the number of linear subspaces on a general hypersurface when this number is finite. This leads to a much better performance than classical Schubert calculus.
Another result of this thesis is related to the computation of Gromov-Witten invariants. The most powerful method for computing Gromov-Witten invariants is the localization of moduli spaces of stable maps. This method was introduced by Kontsevich in 1995. It allows us to compute Gromov-Witten invariants via Bott's formula. As an insightful application, we computed the numbers of rational curves on general complete intersection Calabi-Yau threefolds in projective spaces up to degree six. The results are all in agreement with predictions made from mirror symmetry.

According to the domain specific models of speech perception, speech is supposed to be processed distinctively compared to non-speech. This assumption is supported by many studies dealing with the processing of speech and non-speech stimuli. However, the complexity of both stimulus classes is not matched in most studies, which might be a confounding factor, according to the cue specific models of speech perception. One solution is spectrally rotated speech, which has already been used in a range of fMRI and PET studies. In order to be able to investigate the role of stimulus complexity, vowels, spectrally rotated vowels and a second non-speech condition with two bands of sinusoidal waves, representing the first two formants of the vowels, were used in the present thesis. A detailed description of the creation and the properties of the whole stimulus set are given in Chapter 2 (Experiment 1) of this work. These stimuli were used to investigate the auditory processing of speech and non-speech sounds in a group of dyslexic adults and age matched controls (Experiment 2). The results support the assumption of a general auditory deficit in dyslexia. In order to compare the sensory processing of speech and non-speech in healthy adults on the electrophysiological level, stimuli were also presented within a multifeature oddball paradigm (Experiment 3). Vowels evoked a larger mismatch negativity (MMN) compared to both non-speech stimulus types. The MMN evoked by tones and spectrally rotated tones were compared in Experiment 4, to investigate the role of harmony. No difference in the area of MMN was found, indicating that the results found in Experiment 3 were not moderated by the harmonic structure of the vowels. All results are discussed in the context of the domain and cue specific models of speech perception.

In automotive testrigs we apply load time series to components such that the outcome is as close as possible to some reference data. The testing procedure should in general be less expensive and at the same time take less time for testing. In my thesis, I propose a testrig damage optimization problem (WSDP). This approach improves upon the testrig stress optimization problem (TSOP) used as a state of the art by industry experts.
In both (TSOP) and (WSDP), we optimize the load time series for a given testrig configuration. As the name suggests, in (TSOP) the reference data is the stress time series. The detailed behaviour of the stresses as functions of time are sometimes not the most important topic. Instead the damage potential of the stress signals are considered. Since damage is not part of the objectives in the (TSOP) the total damage computed from the optimized load time series is not optimal with respect to the reference damage. Additionally, the load time series obtained is as long as the reference stress time series and the total damage computation needs cycle counting algorithms and Goodmann corrections. The use of cycle counting algorithms makes the computation of damage from load time series non-differentiable.
To overcome the issues discussed in the previous paragraph this thesis uses block loads for the load time series. Using of block loads makes the damage differentiable with respect to the load time series. Additionally, in some special cases it is shown that damage is convex when block loads are used and no cycle counting algorithms are required. Using load time series with block loads enables us to use damage in the objective function of the (WSDP).
During every iteration of the (WSDP), we have to find the maximum total damage over all plane angles. The first attempt at solving the (WSDP) uses discretization of the interval for plane angle to find the maximum total damage at each iteration. This is shown to give unreliable results and makes maximum total damage function non-differentiable with respect to the plane angle. To overcome this, damage function for a given surface stress tensor due to a block load is remodelled by Gaussian functions. The parameters for the new model are derived.
When we model the damage by Gaussian function, the total damage is computed as a sum of Gaussian functions. The plane with the maximum damage is similar to the modes of the Gaussian Mixture Models (GMM), the difference being that the Gaussian functions used in GMM are probability density functions which is not the case in the damage approximation presented in this work. We derive conditions for a single maximum for Gaussian functions, similar to the ones given for the unimodality of GMM by Aprausheva et al. in [1].
By using the conditions for a single maximum we give a clustering algorithm that merges the Gaussian functions in the sum as clusters. Each cluster obtained through clustering is such that it has a single maximum in the absence of other Gaussian functions of the sum. The approximate point of the maximum of each cluster is used as the starting point for a fixed point equation on the original damage function to get the actual maximum total damage at each iteration.
We implement the method for the (TSOP) and the two methods (with discretization and with clustering) for (WSDP) on two example problems. The results obtained from the (WSDP) using discretization is shown to be better than the results obtained from the (TSOP). Furthermore we show that, (WSDP) using clustering approach to finding the maximum total damage, takes less number of iterations and is more reliable than using discretization.

The demand of sustainability is continuously increasing. Therefore, thermoplastic
composites became a focus of research due to their good weight to performance
ratio. Nevertheless, the limiting factor of their usage for some processes is the loss of
consolidation during re-melting (deconsolidation), which reduces the part quality.
Several studies dealing with deconsolidation are available. These studies investigate
a single material and process, which limit their usefulness in terms of general
interpretations as well as their comparability to other studies. There are two main
approaches. The first approach identifies the internal void pressure as the main
cause of deconsolidation and the second approach identifies the fiber reinforcement
network as the main cause. Due to of their controversial results and limited variety of
materials and processes, there is a big need of a more comprehensive investigation
on several materials and processes.
This study investigates the deconsolidation behavior of 17 different materials and
material configurations considering commodity, engineering, and performance
polymers as well as a carbon and two glass fiber fabrics. Based on the first law of
thermodynamics, a deconsolidation model is proposed and verified by experiments.
Universal applicable input parameters are proposed for the prediction of
deconsolidation to minimize the required input measurements. The study revealed
that the fiber reinforcement network is the main cause of deconsolidation, especially
for fiber volume fractions higher than 48 %. The internal void pressure can promote
deconsolidation, when the specimen was recently manufactured. In other cases the
internal void pressure as well as the surface tension prevents deconsolidation.
During deconsolidation the polymer is displaced by the volume increase of the void.
The polymer flow damps the progress of deconsolidation because of the internal
friction of the polymer. The crystallinity and the thermal expansion lead to a
reversible thickness increase during deconsolidation. Moisture can highly accelerate
deconsolidation and can increase the thickness by several times because of the
vaporization of water. The model is also capable to predict reconsolidation under the
defined boundary condition of pressure, time, and specimen size. For high pressure
matrix squeeze out occur, which falsifies the accuracy of the model.The proposed model was applied to thermoforming, induction welding, and
thermoplastic tape placement. It is demonstrated that the load rate during
thermoforming is the critical factor of achieving complete reconsolidation. The
required load rate can be determined by the model and is dependent on the cooling
rate, the forming length, the extent of deconsolidation, the processing temperature,
and the final pressure. During induction welding deconsolidation can tremendously
occur because of the left moisture in the polymer at the molten state. The moisture
cannot fully diffuse out of the specimen during the faster heating. Therefore,
additional pressure is needed for complete reconsolidation than it would be for a dry
specimen. Deconsolidation is an issue for thermoplastic tape placement, too. It limits
the placement velocity because of insufficient cooling after compaction. If the
specimen after compaction is locally in a molten state, it deconsolidates and causes
residual stresses in the bond line, which decreases the interlaminar shear strength. It
can be concluded that the study gains new knowledge and helps to optimize these
processes by means of the developed model without a high number of required
measurements.
Aufgrund seiner guten spezifischen Festigkeit und Steifigkeit ist der
endlosfaserverstärkte Thermoplast ein hervorragender Leichtbauwerkstoff. Allerdings
kann es während des Wiederaufschmelzens durch Dekonsolidierung zu einem
Verlust der guten mechanischen Eigenschaften kommen, daher ist Dekonsolidierung
unerwünscht. In vielen Studien wurde die Dekonsolidierung mit unterschiedlichen
Ergebnissen untersucht. Dabei wurde meist ein Material und ein Prozess betrachtet.
Eine allgemeine Interpretation und die Vergleichbarkeit unter den Studien sind
dadurch nur begrenzt möglich. Aus der Literatur sind zwei Ansätze bekannt. Dem
ersten Ansatz liegt der Druckunterschied zwischen Poreninnendruck und
Umgebungsdruck als Hauptursache der Dekonsolidierung zu Grunde. Beim zweiten
Ansatz wird die Faserverstärkung als Hauptursache identifiziert. Aufgrund der
kontroversen Ergebnisse und der begrenzten Anzahl der Materialien und
Verarbeitungsverfahren, besteht die Notwendigkeit einer umfassenden Untersuchung
über mehrere Materialien und Prozesse. Diese Studie umfasst drei Polymere
(Polypropylen, Polycarbonat und Polyphenylensulfid), drei Gewebe (Köper, Atlas und
Unidirektional) und zwei Prozesse (Autoklav und Heißpressen) bei verschiedenen
Faservolumengehalten.
Es wurde der Einfluss des Porengehaltes auf die interlaminare Scherfestigkeit
untersucht. Aus der Literatur ist bekannt, dass die interlaminare Scherfestigkeit mit
der Zunahme des Porengehaltes linear sinkt. Dies konnte für die Dekonsolidierung
bestätigt werden. Die Reduktion der interlaminaren Scherfestigkeit für
thermoplastische Matrizes ist kleiner als für duroplastische Matrizes und liegt im
Bereich zwischen 0,5 % bis 1,5 % pro Prozent Porengehalt. Außerdem ist die
Abnahme signifikant vom Matrixpolymer abhängig.
Im Falle der thermisch induzierten Dekonsolidierung nimmt der Porengehalt
proportional zu der Dicke der Probe zu und ist ein Maß für die Dekonsolidierung. Die
Pore expandiert aufgrund der thermischen Gasexpansion und kann durch äußere
Kräfte zur Expansion gezwungen werden, was zu einem Unterdruck in der Pore
führt. Die Faserverstärkung ist die Hauptursache der Dickenzunahme
beziehungsweise der Dekonsolidierung. Die gespeicherte Energie, aufgebaut während der Kompaktierung, wird während der Dekonsolidierung abgegeben. Der
Dekompaktierungsdruck reicht von 0,02 MPa bis 0,15 MPa für die untersuchten
Gewebe und Faservolumengehalte. Die Oberflächenspannung behindert die
Porenexpansion, weil die Oberfläche vergrößert werden muss, die zusätzliche
Energie benötigt. Beim Kontakt von benachbarten Poren verursacht die
Oberflächenspannung ein Verschmelzen der Poren. Durch das bessere Volumen-
Oberfläche-Verhältnis wird Energie abgebaut. Der Polymerfluss bremst die
Entwicklung der Dickenzunahme aufgrund der erforderlichen Energie (innere
Reibung) der viskosen Strömung. Je höher die Temperatur ist, desto niedriger ist die
Viskosität des Polymers, wodurch weniger Energie für ein weiteres Porenwachstum
benötigt wird. Durch den reversiblen Einfluss der Kristallinität und der
Wärmeausdehnung des Verbundes wird während der Erwärmung die Dicke erhöht
und während der Abkühlung wieder verringert. Feuchtigkeit kann einen enormen
Einfluss auf die Dekonsolidierung haben. Ist noch Feuchtigkeit über der
Schmelztemperatur im Verbund vorhanden, verdampft diese und kann die Dicke um
ein Vielfaches der ursprünglichen Dicke vergrößern.
Das Dekonsolidierungsmodell ist in der Lage die Rekonsolidierung vorherzusagen.
Allerdings muss der Rekonsolidierungsdruck unter einem Grenzwert liegen
(0,15 MPa für 50x50 mm² und 1,5 MPa für 500x500 mm² große Proben), da es sonst
bei der Probe zu einem Polymerfluss aus der Probe von mehr als 2 % kommt. Die
Rekonsolidierung ist eine inverse Dekonsolidierung und weist die gleichen
Mechanismen in der entgegengesetzten Richtung auf.
Das entwickelte Modell basiert auf dem ersten Hauptsatz der Thermodynamik und
kann die Dicke während der Dekonsolidierung und der Rekonsolidierung
vorhersagen. Dabei wurden eine homogene Porenverteilung und eine einheitliche,
kugelförmige Porengröße angenommen. Außerdem wurde die Massenerhaltung
angenommen. Um den Aufwand für die Bestimmung der Eingangsgrößen zu
reduzieren, wurden allgemein gültige Eingabeparameter bestimmt, die für eine
Vielzahl von Konfigurationen gelten. Das simulierte Materialverhalten mit den
allgemein gültigen Eingangsparametern erzielte unter den definierten
Einschränkungen eine gute Übereinstimmung mit dem tatsächlichen
Materialverhalten. Nur bei Konfigurationen mit einer Viskositätsdifferenz von mehr als 30 % zwischen der Schmelztemperatur und der Prozesstemperatur sind die
allgemein gültigen Eingangsparameter nicht anwendbar. Um die Relevanz für die
Industrie aufzuzeigen, wurden die Effekte der Dekonsolidierung für drei weitere
Verfahren simuliert. Es wurde gezeigt, dass die Kraftzunahmegeschwindigkeit
während des Thermoformens ein Schlüsselfaktor für eine vollständige
Rekonsolidierung ist. Wenn die Kraft zu langsam appliziert wird oder die finale Kraft
zu gering ist, ist die Probe bereits erstarrt, bevor eine vollständige Konsolidierung
erreicht werden kann. Auch beim Induktionsschweißen kann Dekonsolidierung
auftreten. Besonders die Feuchtigkeit kann zu einer starken Zunahme der
Dekonsolidierung führen, verursacht durch die sehr schnellen Heizraten von mehr als
100 K/min. Die Feuchtigkeit kann während der kurzen Aufheizphase nicht vollständig
aus dem Polymer ausdiffundieren, sodass die Feuchtigkeit beim Erreichen der
Schmelztemperatur in der Probe verdampft. Beim Tapelegen wird die
Ablegegeschwindigkeit durch die Dekonsolidierung begrenzt. Nach einer scheinbar
vollständigen Konsolidierung unter der Walze kann die Probe lokal dekonsolidieren,
wenn das Polymer unter der Oberfläche noch geschmolzen ist. Die daraus
resultierenden Poren reduzieren die interlaminare Scherfestigkeit drastisch um 5,8 %
pro Prozent Porengehalt für den untersuchten Fall. Ursache ist die Kristallisation in
der Verbindungszone. Dadurch werden Eigenspannungen erzeugt, die in der
gleichen Größenordnung wie die tatsächliche Scherfestigkeit sind.

In the theory of option pricing one is usually concerned with evaluating expectations under the risk-neutral measure in a continuous-time model.
However, very often these values cannot be calculated explicitly and numerical methods need to be applied to approximate the desired quantity. Monte Carlo simulations, numerical methods for PDEs and the lattice approach are the methods typically employed. In this thesis we consider the latter approach, with the main focus on binomial trees.
The binomial method is based on the concept of weak convergence. The discrete-time model is constructed so as to ensure convergence in distribution to the continuous process. This means that the expectations calculated in the binomial tree can be used as approximations of the option prices in the continuous model. The binomial method is easy to implement and can be adapted to options with different types of payout structures, including American options. This makes the approach very appealing. However, the problem is that in many cases, the convergence of the method is slow and highly irregular, and even a fine discretization does not guarantee accurate price approximations. Therefore, ways of improving the convergence properties are required.
We apply Edgeworth expansions to study the convergence behavior of the lattice approach. We propose a general framework, that allows to obtain asymptotic expansion for both multinomial and multidimensional trees. This information is then used to construct advanced models with superior convergence properties.
In binomial models we usually deal with triangular arrays of lattice random vectors. In this case the available results on Edgeworth expansions for lattices are not directly applicable. Therefore, we first present Edgeworth expansions, which are also valid for the binomial tree setting. We then apply these result to the one-dimensional and multidimensional Black-Scholes models. We obtain third order expansions
for general binomial and trinomial trees in the 1D setting, and construct advanced models for digital, vanilla and barrier options. Second order expansion are provided for the standard 2D binomial trees and advanced models are constructed for the two-asset digital and the two-asset correlation options. We also present advanced binomial models for a multidimensional setting.

Test rig optimization
(2014)

Designing good test rigs for fatigue life tests is a common task in the auto-
motive industry. The problem to find an optimal test rig configuration and
actuator load signals can be formulated as a mathematical program. We in-
troduce a new optimization model that includes multi-criteria, discrete and
continuous aspects. At the same time we manage to avoid the necessity to
deal with the rainflow-counting (RFC) method. RFC is an algorithm, which
extracts load cycles from an irregular time signal. As a mathematical func-
tion it is non-convex and non-differentiable and, hence, makes optimization
of the test rig intractable.
The block structure of the load signals is assumed from the beginning.
It highly reduces complexity of the problem without decreasing the feasible
set. Also, we optimize with respect to the actuators’ positions, which makes
it possible to take torques into account and thus extend the feasible set. As
a result, the new model gives significantly better results, compared with the
other approaches in the test rig optimization.
Under certain conditions, the non-convex test rig problem is a union of
convex problems on cones. Numerical methods for optimization usually need
constraints and a starting point. We describe an algorithm that detects each
cone and its interior point in a polynomial time.
The test rig problem belongs to the class of bilevel programs. For every
instance of the state vector, the sum of functions has to be maximized. We
propose a new branch and bound technique that uses local maxima of every
summand.

The recognition of day-to-day activities is still a very challenging and important research topic. During recent years, a lot of research has gone into designing and realizing smart environ- ments in different application areas such as health care, maintenance, sports or smart homes. As a result, a large amount of sensor modalities were developed, different types of activity and context recognition services were implemented and the resulting systems were benchmarked using state-of-the-art evaluation techniques. However, so far hardly any of these approaches have found their way into the market and consequently into the homes of real end-users on a large scale. The reason for this is, that almost all systems have one or more of the following characteristics in common: expensive high-end or prototype sensors are used which are not af- fordable or reliable enough for mainstream applications; many systems are deployed in highly instrumented environments or so-called "living labs", which are far from real-life scenarios and are often evaluated only in research labs; almost all systems are based on complex system con- figurations and/or extensive training data sets, which means that a large amount of data must be collected in order to install the system. Furthermore, many systems rely on a user and/or environment dependent training, which makes it even more difficult to install them on a large scale. Besides, a standardized integration procedure for the deployment of services in existing environments and smart homes has still not been defined. As a matter of fact, service providers use their own closed systems, which are not compatible with other systems, services or sensors. It is clear, that these points make it nearly impossible to deploy activity recognition systems in a real daily-life environment, to make them affordable for real users and to deploy them in hundreds or thousands of different homes.
This thesis works towards the solution of the above mentioned problems. Activity and context recognition systems designed for large-scale deployment and real-life scenarios are intro- duced. Systems are based on low-cost, reliable sensors and can be set up, configured and trained with little effort, even by technical laymen. It is because of these characteristics that we call our approach "minimally invasive". As a consequence, large amounts of training data, that are usu- ally required by many state-of-the-art approaches, are not necessary. Furthermore, all systems were integrated unobtrusively in real-world/similar to real-world environments and were evalu- ated under real-life, as well as similar to real-life conditions. The thesis addresses the following topics: First, a sub-room level indoor positioning system is introduced. The system is based on low-cost ceiling cameras and a simple computer vision tracking approach. The problem of user identification is solved by correlating modes of locomotion patterns derived from the trajectory of unidentified objects and on-body motion sensors. Afterwards, the issue of recognizing how and what mainstream household devices have been used for is considered. Based on a low-cost microphone, the water consumption of water-taps can be approximated by analyzing plumbing noise. Besides that, operating modes of mainstream electronic devices were recognized by using rule-based classifiers, electric current features and power measurement sensors. As a next step, the difficulty of spotting subtle, barely distinguishable hand activities and the resulting object interactions, within a data set containing a large amount of background data, is addressed. The problem is solved by introducing an on-body core system which is configured by simple, one-time physical measurements and minimal data collections. The lack of large training sets is compensated by fusing the system with activity and context recognition systems, that are able to reduce the search space observed. Amongst other systems, previously introduced approaches and ideas are revisited in this section. An in-depth evaluation shows the impact of each fusion procedure on the performance and run-time of the system. The approaches introduced are able to provide significantly better results than a state-of-the-art inertial system using large amounts of training data. The idea of using unobtrusive sensors has also been applied to the field of behavior analysis. Integrated smartphone sensors are used to detect behavioral changes of in- dividuals due to medium-term stress periods. Behavioral parameters related to location traces, social interactions and phone usage were analyzed to detect significant behavioral changes of individuals during stressless and stressful time periods. Finally, as a closing part of the the- sis, a standardization approach related to the integration of ambient intelligence systems (as introduced in this thesis) in real-life and large-scale scenarios is shown.

This dissertation focuses on the evaluation of technical and environmental sustainability of water distribution systems based on scenario analysis. The decision support system is created to assist in the decision making-process and to visualize the results of the sustainability assessment for current and future populations and scenarios. First, a methodology is developed to assess the technical and environmental sustainability for the current and future water distribution system scenarios. Then, scenarios are produced to evaluate alternative solutions for the current water distribution system as well as future populations and water demand variations. Finally, a decision support system is proposed using a combination of several visualization approaches to increase the data readability and robustness for the sustainability evaluations of the water distribution system.
The technical sustainability of a water distribution system is measured using the sustainability index methodology which is based on the reliability, resiliency and vulnerability performance criteria. Hydraulic efficiency and water quality requirements are represented using the nodal pressure and water age parameters, respectively. The U.S. Environmental Protection Agency EPANET software is used to simulate hydraulic (i.e. nodal pressure) and water quality (i.e. water age) analysis in a case study. In addition, the environmental sustainability of a water network is evaluated using the “total fresh water use” and “total energy intensity” indicators. For each scenario, multi-criteria decision analysis is used to combine technical and environmental sustainability criteria for the study area.
The technical and environmental sustainability assessment methodology is first applied to the baseline scenario (i.e. the current water distribution system). Critical locations where hydraulic efficiency and water quality problems occur in the current system are identified. There are two major scenario options that are considered to increase the sustainability at these critical locations. These scenarios focus on creating alternative systems in order to test and verify the technical and environmental sustainability methodology rather than obtaining the best solution for the current and future water distribution systems. The first scenario is a traditional approach in order to increase the hydraulic efficiency and water quality. This scenario includes using additional network components such as booster pumps, valves etc. The second scenario is based on using reclaimed water supply to meet the non-potable water demand and fire flow. The fire flow simulation is specifically included in the sustainability assessment since regulations have significant impact on the urban water infrastructure design. Eliminating the fire flow need from potable water distribution systems would assist in saving fresh water resources as well as to reduce detention times.
The decision support system is created to visualize the results of each scenario and to effectively compare these results with each other. The EPANET software is a powerful tool used to conduct hydraulic and water quality analysis but for the decision support system purposes the visualization capabilities are limited. Therefore, in this dissertation, the hydraulic and water quality simulations are completed using EPANET software and the results for each scenario are visualized by combining several visualization techniques in order to provide a better data readability. The first technique introduced here is using small multiple maps instead of the animation technique to visualize the nodal pressure and water age parameters. This technique eliminates the change blindness and provides easy comparison of time steps. In addition, a procedure is proposed to aggregate the nodes along the edges in order to simplify the water network. A circle view technique is used to visualize two values of a single parameter (i.e. the nodal pressure or water age). The third approach is based on fitting the water network into a grid representation which assists in eliminating the irregular geographic distribution of the nodes and improves the visibility of each circle view. Finally, a prototype for an interactive decision support tool is proposed for the current population and water demand scenarios. Interactive tools enable analyzing of the aggregated nodes and provide information about the results of each of the current water distribution scenarios.

In 2006 Jeffrey Achter proved that the distribution of divisor class groups of degree 0 of function fields with a fixed genus and the distribution of eigenspaces in symplectic similitude groups are closely related to each other. Gunter Malle proposed that there should be a similar correspondence between the distribution of class groups of number fields and the distribution of eigenspaces in ceratin matrix groups. Motivated by these results and suggestions we study the distribution of eigenspaces corresponding to the eigenvalue one in some special subgroups of the general linear group over factor rings of rings of integers of number fields and derive some conjectural statements about the distribution of \(p\)-parts of class groups of number fields over a base field \(K_{0}\). Where our main interest lies in the case that \(K_{0}\) contains the \(p\)th roots of unity, because in this situation the \(p\)-parts of class groups seem to behave in an other way like predicted by the popular conjectures of Henri Cohen and Jacques Martinet. In 2010 based on computational data Malle has succeeded in formulating a conjecture in the spirit of Cohen and Martinet for this case. Here using our investigations about the distribution in matrixgroups we generalize the conjecture of Malle to a more abstract level and establish a theoretical backup for these statements.