## Doctoral Thesis

### Refine

#### Year of publication

- 2014 (47) (remove)

#### Document Type

- Doctoral Thesis (47) (remove)

#### Language

- English (47) (remove)

#### Keywords

- Activity Recognition, Wearable Computing, Minimal Training, Unobtrusive Instrumentations (1)
- Activity recognition (1)
- Adaptive Data Structure (1)
- AhRR (1)
- Algorithm (1)
- Boosting (1)
- CYP1A1 (1)
- Classification (1)
- Closure (1)
- Code Generation (1)
- Computer graphics (1)
- Cycle Accuracy (1)
- DL-PCBs (1)
- Dataset (1)
- Dekonsolidierung (1)
- Dioxin (1)
- Direct Numerical Simulation (1)
- Discrete Event Simulation (DES) (1)
- EROD (1)
- Eikonal equation (1)
- Endlicher Automat (1)
- Evaluation (1)
- Feasibility study (1)
- Formale Grammatik (1)
- Formale Sprache (1)
- Grouping by similarity (1)
- Hypergraph (1)
- IP-XACT (1)
- Ileostomy (1)
- Immunoblot (1)
- Intensity estimation (1)
- Interactive decision support systems (1)
- Invariante (1)
- Kellerautomat (1)
- Knowledge Management (1)
- LIR-Tree (1)
- Machine learning (1)
- Microarray (1)
- Mobile system (1)
- Mustererkennung (1)
- Noise Control, Feature Extraction, Speech Recognition (1)
- OCR (1)
- PCDD/Fs (1)
- Partial Differential Equations (1)
- Pedestrian FLow (1)
- Perceptual grouping (1)
- Personalisation (1)
- Pervasive health (1)
- Physical activity monitoring (1)
- Recommender Systems (1)
- Response Priming (1)
- Self-splitting objects (1)
- Semantic Web (1)
- Semantic Wikis (1)
- Shared Resource Modeling (1)
- Stokes Equations (1)
- Sustainability (1)
- Symmetry (1)
- SystemC (1)
- TIPARP (1)
- Temporal Decoupling (1)
- Tensorfeld (1)
- Thermoplast (1)
- Topology visualization (1)
- Transaction Level Modeling (TLM) (1)
- Ubiquitous system (1)
- Urban Water Supply (1)
- Volume rendering (1)
- Water resources (1)
- Wearable computing (1)
- XMCD (1)
- aryl hydrocarbon receptor (1)
- bioavailability (1)
- cobalt (1)
- coffee (1)
- dioxin-like compounds (1)
- fatigue (1)
- flow cytometry (1)
- gas phase (1)
- geographic information systems (1)
- geology (1)
- hypergraph (1)
- invariant (1)
- iron (1)
- magnetism (1)
- metal cluster (1)
- moment (1)
- nickel (1)
- optimization (1)
- orbit (1)
- peripheral blood mononuclear cells (1)
- point cloud (1)
- polyphenol (1)
- rat liver cell systems (1)
- relative effect potencies (1)
- single molecule magnet (1)
- spin (1)
- tensor (1)
- tensorfield (1)
- terrain rendering (1)
- tetrachlorodibenzo-p-dioxin (1)
- toxic equivalency factor (TEF) concept (1)
- vectorfield (1)
- virtual reality (1)
- whole genome microarray analysis (1)

#### Faculty / Organisational entity

Optical character recognition (OCR) of machine printed text is ubiquitously considered as a solved problem. However, error free OCR of degraded (broken and merged) and noisy text is still challenging for modern OCR systems. OCR of degraded text with high accuracy is very important due to many applications in business, industry and large scale document digitization projects. This thesis presents a new OCR method for degraded
text recognition by introducing a combined ANN/HMM OCR approach. The approach
provides significantly better performance in comparison with state-of-the-art HMM based OCR methods and existing open source OCR systems. In addition, the thesis introduces novel applications of ANNs and HMMs for document image preprocessing and recognition of low resolution text. Furthermore, the thesis provides psychophysical experiments to determine the effect of letter permutation in visual word recognition of Latin and Cursive
script languages.
HMMs and ANNs are widely employed pattern recognition paradigms and have been
used in numerous pattern classification problems. This work presents a simple and novel method for combining the HMMs and ANNs in application to segmentation free OCR of degraded text. HMMs and ANNs are powerful pattern recognition strategies and their combination is interesting to improve current state-of-the-art research in OCR. Mostly, previous attempts in combining the HMMs and ANNs were focused on applying ANNs
as approximation of the probability density function or as a neural vector quantizer for HMMs. These methods either require combined NN/HMM training criteria [ECBG-MZM11] or they use complex neural network architecture like time delay or space displacement neural networks [BLNB95]. However, in this work neural networks are used as discriminative feature extractor, in combination with novel text line scanning mechanism, to extract discriminative features from unsegmented text lines. The features are
processed by HMMs to provide segmentation free text line recognition. The ANN/HMM modules are trained separately on a common dataset by using standard machine learning procedures. The proposed ANN/HMM OCR system also realizes to some extent several cognitive reading based strategies during the OCR. On a dataset of 1,060 degraded text lines extracted from the widely used UNLV-ISRI benchmark database [TNBC99], the presented system achieves a 30% reduction in error rate as compared to Google’s Tesseract OCR system [Smi13] and 43% reduction in error as compared to OCRopus OCR system [Bre08], which are the best open source OCR systems available today.
In addition, this thesis introduces new applications of HMMs and ANNs in OCR and document images preprocessing. First, an HMMs-based segmentation free OCR approach is presented for recognition of low resolution text. OCR of low resolution text is quite important due to presence of low resolution text in screen-shots, web images and video captions. OCR of low resolution text is challenging because of antialiased rendering and use of very small font size. The characters in low resolution text are usually joined to each other and they may appear differently at different locations on computer screen. This
work presents the use of HMMs in optical recognition of low resolution isolated characters and text lines. The evaluation of the proposed method shows that HMMs-based OCR techniques works quite well and reaches the performance of specialized approaches for OCR of low resolution text.
Then, this thesis presents novel applications of ANNs for automatic script recognition and orientation detection. Script recognition determines the written script on the page for the application of an appropriate character recognition algorithm. Orientation detection detects and corrects the deviation of the document’s orientation angle from the horizontal direction. Both, script recognition and orientation detection, are important preprocessing steps in developing robust OCR systems. In this work, instead of extracting handcrafted features, convolutional neural networks are used to extract relevant discriminative features for each classification task. The proposed method resulted in more than 95% script recognition accuracy on various multi-script documents at connected component level
and 100% page orientation detection accuracy for Urdu documents.
Human reading is a nearly analogous cognitive process to OCR that involves decoding of printed symbols into meanings. Studying the cognitive reading behavior may help in building a robust machine reading strategy. This thesis presents a behavioral study that deals on how cognitive system works in visual recognition of words and permuted non-words. The objective of this study is to determine the impact of overall word shape
in visual word recognition process. The permutation is considered as a source of shape degradation and visual appearance of actual words can be distorted by changing the constituent letter positions inside the words. The study proposes a hypothesis that reading of words and permuted non-words are two distinct mental level processes, and people use
different strategies in handling permuted non-words as compared to normal words. The hypothesis is tested by conducting psychophysical experiments in visual recognition of words from orthographically different languages i.e. Urdu, German and English. Experimental data is analyzed using analysis of variance (ANOVA) and distribution free rank tests to determine significance differences in response time latencies for two classes of data. The results support the presented hypothesis and the findings are consistent with
the dual route theories of reading.

This dissertation focuses on the evaluation of technical and environmental sustainability of water distribution systems based on scenario analysis. The decision support system is created to assist in the decision making-process and to visualize the results of the sustainability assessment for current and future populations and scenarios. First, a methodology is developed to assess the technical and environmental sustainability for the current and future water distribution system scenarios. Then, scenarios are produced to evaluate alternative solutions for the current water distribution system as well as future populations and water demand variations. Finally, a decision support system is proposed using a combination of several visualization approaches to increase the data readability and robustness for the sustainability evaluations of the water distribution system.
The technical sustainability of a water distribution system is measured using the sustainability index methodology which is based on the reliability, resiliency and vulnerability performance criteria. Hydraulic efficiency and water quality requirements are represented using the nodal pressure and water age parameters, respectively. The U.S. Environmental Protection Agency EPANET software is used to simulate hydraulic (i.e. nodal pressure) and water quality (i.e. water age) analysis in a case study. In addition, the environmental sustainability of a water network is evaluated using the “total fresh water use” and “total energy intensity” indicators. For each scenario, multi-criteria decision analysis is used to combine technical and environmental sustainability criteria for the study area.
The technical and environmental sustainability assessment methodology is first applied to the baseline scenario (i.e. the current water distribution system). Critical locations where hydraulic efficiency and water quality problems occur in the current system are identified. There are two major scenario options that are considered to increase the sustainability at these critical locations. These scenarios focus on creating alternative systems in order to test and verify the technical and environmental sustainability methodology rather than obtaining the best solution for the current and future water distribution systems. The first scenario is a traditional approach in order to increase the hydraulic efficiency and water quality. This scenario includes using additional network components such as booster pumps, valves etc. The second scenario is based on using reclaimed water supply to meet the non-potable water demand and fire flow. The fire flow simulation is specifically included in the sustainability assessment since regulations have significant impact on the urban water infrastructure design. Eliminating the fire flow need from potable water distribution systems would assist in saving fresh water resources as well as to reduce detention times.
The decision support system is created to visualize the results of each scenario and to effectively compare these results with each other. The EPANET software is a powerful tool used to conduct hydraulic and water quality analysis but for the decision support system purposes the visualization capabilities are limited. Therefore, in this dissertation, the hydraulic and water quality simulations are completed using EPANET software and the results for each scenario are visualized by combining several visualization techniques in order to provide a better data readability. The first technique introduced here is using small multiple maps instead of the animation technique to visualize the nodal pressure and water age parameters. This technique eliminates the change blindness and provides easy comparison of time steps. In addition, a procedure is proposed to aggregate the nodes along the edges in order to simplify the water network. A circle view technique is used to visualize two values of a single parameter (i.e. the nodal pressure or water age). The third approach is based on fitting the water network into a grid representation which assists in eliminating the irregular geographic distribution of the nodes and improves the visibility of each circle view. Finally, a prototype for an interactive decision support tool is proposed for the current population and water demand scenarios. Interactive tools enable analyzing of the aggregated nodes and provide information about the results of each of the current water distribution scenarios.

A positive affection of human health by nutrition is of high interest, especially for bioactive compounds which are consumed daily in high amounts. This is the case for chlorogenic acids (CGA) ingested by coffee. This molecule class is associated with several possible beneficial health effects observed in vitro that strongly depend on their bioavailability. So far factors influencing bioavailability of CGA such as dose, molecule structure and site of absorption haven´t been investigated sufficiently.
Therefore we performed an in vivo dose-response study with ileostomists, who consumed three different nutritional doses of CGA ingested as instant coffee (4,525 (HIGH); 2,219 (MEDIUM); 1,053 (LOW) μmol CGA). CGA concentrations were determined in ileal fluid, urine and plasma. Furthermore, we conducted an ex vivo study with pig jejunal mucosa using the Ussing chamber model to confirm the in vivo observations. Individual transfer rates of CGA from coffee were investigated, namely: caffeoylquinic acid (CQA), feruloylquinic acid (FQA), caffeic acid (CA), dicaffeoylquinic acid (diCQA) and QA at physiological concentrations (0.2–3.5 mM). Samples were analyzed by HPLC-DAD, -ESI-MS and -ESI-MS/MS.
About ⅔ of the ingested CGA by coffee consumption were available in the colon dose independent. Nevertheless, the results showed that the consumption of higher CGA doses leads to a faster ileal excretion. This corresponds to a plasma AUC0-8h for CGA and metabolites of 4,412 ± 751 nM*h0-8-1 (HIGH), 2,394 ± 637 nM*h0-8-1 (MEDIUM) and 1,782 ± 731 nM*h0-8-1 (LOW) respectively, and a renal excretion of 8.0 ± 4.9% (HIGH), 12.1 ± 6.7% (MEDIUM) and 14.6 ± 6.8% (LOW). Moreover interindividual differences in gastrointestinal transit times were related to differences in total CGA absorption. Thus the variety of patient´s physiology is a decisive bioavailability factor for CGA uptake. This is corroborated ex vivo by a direct proportional relationship of incubation time with absorbed CGA amount.
The consumption of high CGA doses influences the metabolism pattern as an increasing glucuronidation was observed with consumption of increasing CGA doses. However, the different CGA doses have only minor effects on the overall bioavailability which was confirmed ex vivo by a non-saturable passive diffusion of 5-CQA. Furthermore, we identified in the Ussing chamber an active efflux secretion for 5-CQA that decreases its bioavailability and the physicochemical properties of the CGA subgroups as an important bioavailability factor. Transferred amount in increasing order: diCQA, trace amounts; CQA ≈ 1%; CA ≈ 1.5%; FQA ≈ 2%; and QA ≈ 4%.
Altogether, the consumption of increasing CGA doses by coffee had a minor effect on oral bioavailability in ileostomists, such as a slightly increased glucuronidation. Thus, the consumption of high amounts of CGA from coffee in the daily diet is not limiting the CGA concentrations at the site of possible health effects in the human body. However, according to the patient´s physiology the interindividual gastrointestinal transit time which is possibly influenced by dose is influencing CGA bioavailability. Moreover, ex vivo CGA absorption is governed by diffusion as an absorption mechanism corroborating an unsaturable uptake in vivo and by the individual physicochemical properties of CGA.

As the complexity of embedded systems continuously rises, their development becomes more and more challenging. One technique to cope with this complexity is the employment of virtual prototypes. The virtual prototypes are intended to represent the embedded system’s properties on different levels of detail like register transfer level or transaction level. Virtual prototypes can be used for different tasks throughout the development process. They can act as executable specification, can be used for architecture exploration, can ease system integration, and allow for pre- and post-silicon software development and verification. The optimization objectives for virtual prototypes and their creation process are manifold. Finding an appropriate trade-off between the simulation accuracy, the simulation performance, and the implementation effort is a major challenge, as these requirements are contradictory.
In this work, two new and complementary techniques for the efficient creation of accurate and high-performance SystemC based virtual prototypes are proposed: Advanced Temporal Decoupling (ATD) and Transparent Transaction Level Modeling (TTLM). The suitability for industrial environments is assured by the employment of common standards like SystemC TLM-2.0 and IP-XACT.
Advanced Temporal Decoupling enhances the simulation accuracy while retaining high simulation performance by allowing for cycle accurate simulation in the context of SystemC TLM-2.0 temporal decoupling. This is achieved by exploiting the local time warp arising in SystemC TLM-2.0 temporal decoupled models to support the computation of resource contention effects. In ATD, accesses to shared resource are managed by Temporal Decoupled Semaphores (TDSems) which are integrated into the modeled shared resources. The set of TDSems assures the correct execution order of shared resource accesses and incorporates timing effects resulting from shared resource access execution and resource conflicts. This is done by dynamically varying the data granularity of resource accesses based on information gathered from the local time warp. ATD facilitates modeling of a wide range of resource and resource access properties like preemptable and non-preemptable accesses, synchronous and asynchronous accesses, multiport resources, dynamic access priorities, interacting and cascaded resources, and user specified schedulers prioritizing simultaneous resource accesses.
Transparent Transaction Level Modeling focuses on the efficient creation of virtual prototypes by reducing the implementation effort and consists of a library and a code generator. The TTLM library adds a layer of convenience functions to ATD comprising various application programming interfaces for inter module communication, virtual prototype configuration and run time information extraction. The TTLM generator is used to automatically generate the structural code of the virtual prototype from the formal hardware specification language IP-XACT.
The applicability and benefits of the presented techniques are demonstrated using an image processing centric automotive application. Compared to an existing cycle accurate SystemC model, the implementation effort can be reduced by approximately 50% using TTLM. Applying ATD, the simulation performance can be increased by a factor of up to five while retaining cycle accuracy.

Monte Carlo simulation is one of the commonly used methods for risk estimation on financial markets, especially for option portfolios, where any analytical approximation is usually too inaccurate. However, the usually high computational effort for complex portfolios with a large number of underlying assets motivates the application of variance reduction procedures. Variance reduction for estimating the probability of high portfolio losses has been extensively studied by Glasserman et al. A great variance reduction is achieved by applying an exponential twisting importance sampling algorithm together with stratification. The popular and much faster Delta-Gamma approximation replaces the portfolio loss function in order to guide the choice of the importance sampling density and it plays the role of the stratification variable. The main disadvantage of the proposed algorithm is that it is derived only in the case of Gaussian and some heavy-tailed changes in risk factors.
Hence, our main goal is to keep the main advantage of the Monte Carlo simulation, namely its ability to perform a simulation under alternative assumptions on the distribution of the changes in risk factors, also in the variance reduction algorithms. Step by step, we construct new variance reduction techniques for estimating the probability of high portfolio losses. They are based on the idea of the Cross-Entropy importance sampling procedure. More precisely, the importance sampling density is chosen as the closest one to the optimal importance sampling density (zero variance estimator) out of some parametric family of densities with respect to Kullback - Leibler cross-entropy. Our algorithms are based on the special choices of the parametric family and can now use any approximation of the portfolio loss function. A special stratification is developed, so that any approximation of the portfolio loss function under any assumption of the distribution of the risk factors can be used. The constructed algorithms can easily be applied for any distribution of risk factors, no matter if light- or heavy-tailed. The numerical study exhibits a greater variance reduction than of the algorithm from Glasserman et al. The use of a better approximation may improve the performance of our algorithms significantly, as it is shown in the numerical study.
The literature on the estimation of the popular market risk measures, namely VaR and CVaR, often refers to the algorithms for estimating the probability of high portfolio losses, describing the corresponding transition process only briefly. Hence, we give a consecutive discussion of this problem. Results necessary to construct confidence intervals for both measures under the mentioned variance reduction procedures are also given.

If an automated system is tasked to provide services such as search or clustering of information on an information repository, the quality of the output depends a lot on the information that is available to the system in machine-readable form. Simple text, for example, is machine-readable only in a very limited sense. Advanced services typically need to derive other representations of the text (e.g., sets of keywords) as input for their core algorithms. Some services might need information that cannot be derived from the resource in question alone, but is available as separate metadata only, such as usage information. Annotations can be used to carry this information.
This thesis focuses on so-called ontology-based annotations. In contrast to other forms of annotations such as Tags (arbitrary strings that users can assign to resources), ontology-based annotations conform to a predefined data structure and class hierarchy. An advantage of this approach is that rich information can be stored in a well-structured way in the annotations; a drawback is that users need to be familiar with the hierarchy and other design decisions of the underlying ontology used for annotations.
Two scenarios are considered in this thesis:
First, a document-based scenario in which text annotations are used to represent both information about the text content and usage and user context information in a multi-user setting with mostly objective annotation criteria; second, a resource-based scenario whose annotation model focuses on multi-user settings with subjective annotation criteria, using (dis-)similarities in user annotations to derive user similarity metrics, and building personalized views from this information.
Finally, the prototypical systems that have been developed throughout this thesis get evaluated, proving the concepts presented in this thesis.

This thesis discusses several applications of computational topology to the visualization
of scalar fields. Scalar field data come from different measurements and simulations. The
intrinsic properties of this kind of data, which make the visualization of it to a complicated
task, are the large size and presence of noise. Computational topology is a powerful tool
for automatic feature extraction, which allows the user to interpret the information contained
in the dataset in a more efficient way. Utilizing it one can make the main purpose of
scientific visualization, namely extracting knowledge from data, a more convenient task.
Volume rendering is a class of methods designed for realistic visual representation of 3D
scalar fields. It is used in a wide range of applications with different data size, noise
rate and requirements on interactivity and flexibility. At the moment there is no known
technique which can meet the needs of every application domain, therefore development
of methods solving specific problems is required. One of such algorithms, designed for
rendering of noisy data with high frequencies is presented in the first part of this thesis.
The method works with multidimensional transfer functions and is especially suited for
functions exhibiting sharp features. Compared with known methods the presented algorithm
achieves better visual quality with a faster performance in presence of mentioned
features. An improvement on the method utilizing a topological theory, Morse theory, and
a topological construct, Morse-Smale complex, is also presented in this part of the thesis.
The improvement allows for performance speedup at a little precomputation and memory
cost.
The usage of topological methods for feature extraction on a real world dataset often
results in a very large feature space which easily leads to information overflow. Topology
simplification is designed to reduce the number of features and allow a domain expert
to concentrate on the most important ones. In the terms of Morse theory features are
represented by critical points. An importance measure which is usually used for removing
critical points is called homological persistence. Critical points are cancelled pairwise
according to their homological persistence value. In the presence of outlier-like noise
homological persistence has a clear drawback: the outliers get a high importance value
assigned and therefore are not being removed. In the second part of this thesis a new
importance measure is presented which is especially suited for data with outliers. This
importance measure is called scale space persistence. The algorithm for the computation
of this measure is based on the scale space theory known from the area of computer
vision. The development of a critical point in scale space gives information about its
spacial extent, therefore outliers can be distinguished from other critical points. The usage
of the presented importance measure is demonstrated on a real world application, crater
identification on a surface of Mars.
The third part of this work presents a system for general interactive topology analysis
and exploration. The development of such a system is motivated by the fact that topological
methods are often considered to be complicated and hard to understand, because
application of topology for visualization requires deep understanding of the mathematical
background behind it. A domain expert exploring the data using topology for feature
extraction needs an intuitive way to manipulate the exploration process. The presented
system is based on an intuitive notion of a scene graph, where the user can choose and
place the component blocks to achieve an individual result. This way the domain expert
can extract more knowledge from given data independent on the application domain. The
tool gives the possibility for calculation and simplification of the underlying topological
structure, Morse-Smale complex, and also the visualization of parts of it. The system also
includes a simple generic query language to acquire different structures of the topological
structure at different levels of hierarchy.
The fourth part of this dissertation is concentrated on an application of computational
geometry for quality assessment of a triangulated surface. Quality assessment of a triangulation
is called surface interrogation and is aimed for revealing intrinsic irregularities
of a surface. Curvature and continuity are the properties required to design a visually
pleasing geometric object. For example, a surface of a manufactured body usually should
be convex without bumps of wiggles. Conventional rendering methods hide the regions
of interest because of smoothing or interpolation. Two new methods which are presented
here: curvature estimation using local fitting with B´ezier patches and computation of reflection
lines for visual representation of continuity, are specially designed for assessment
problems. The examples and comparisons presented in this part of the thesis prove the
benefits of the introduced algorithms. The methods are also well suited for concurrent visualization
of the results from simulation and surface interrogation to reveal the possible
intrinsic relationship between them.

The objective of this thesis consists in developing systematic event-triggered control designs for specified event generators, which is an important alternative to the traditional periodic sampling control. Sporadic sampling inherently arising in event-triggered control is determined by the event-triggering conditions. This feature invokes the desire of
finding new control theory as the traditional sampled-data theory in computer control.
Developing controller coupling with the applied event-triggering condition to maximize the control performance is the essence for event-triggered control design. In the design the stability of the control system needs to be ensured with the first priority. Concerning variant control aims they should be clearly incorporated in the design procedures. Considering applications in embedded control systems efficient implementation requires a low complexity of embedded software architectures. The thesis targets at offering such a design to further complete the theory of event-triggered control designs.

This thesis focuses on dealing with some new aspects of continuous time portfolio optimization by using the stochastic control method.
First, we extend the Busch-Korn-Seifried model for a large investor by using the Vasicek model for the short rate, and that problem is solved explicitly for two types of intensity functions.
Next, we justify the existence of the constant proportion portfolio insurance (CPPI) strategy in a framework containing a stochastic short rate and a Markov switching parameter. The effect of Vasicek short rate on the CPPI strategy has been studied by Horsky (2012). This part of the thesis extends his research by including a Markov switching parameter, and the generalization is based on the B\"{a}uerle-Rieder investment problem. The explicit solutions are obtained for the portfolio problem without the Money Market Account as well as the portfolio problem with the Money Market Account.
Finally, we apply the method used in Busch-Korn-Seifried investment problem to explicitly solve the portfolio optimization with a stochastic benchmark.

In the theory of option pricing one is usually concerned with evaluating expectations under the risk-neutral measure in a continuous-time model.
However, very often these values cannot be calculated explicitly and numerical methods need to be applied to approximate the desired quantity. Monte Carlo simulations, numerical methods for PDEs and the lattice approach are the methods typically employed. In this thesis we consider the latter approach, with the main focus on binomial trees.
The binomial method is based on the concept of weak convergence. The discrete-time model is constructed so as to ensure convergence in distribution to the continuous process. This means that the expectations calculated in the binomial tree can be used as approximations of the option prices in the continuous model. The binomial method is easy to implement and can be adapted to options with different types of payout structures, including American options. This makes the approach very appealing. However, the problem is that in many cases, the convergence of the method is slow and highly irregular, and even a fine discretization does not guarantee accurate price approximations. Therefore, ways of improving the convergence properties are required.
We apply Edgeworth expansions to study the convergence behavior of the lattice approach. We propose a general framework, that allows to obtain asymptotic expansion for both multinomial and multidimensional trees. This information is then used to construct advanced models with superior convergence properties.
In binomial models we usually deal with triangular arrays of lattice random vectors. In this case the available results on Edgeworth expansions for lattices are not directly applicable. Therefore, we first present Edgeworth expansions, which are also valid for the binomial tree setting. We then apply these result to the one-dimensional and multidimensional Black-Scholes models. We obtain third order expansions
for general binomial and trinomial trees in the 1D setting, and construct advanced models for digital, vanilla and barrier options. Second order expansion are provided for the standard 2D binomial trees and advanced models are constructed for the two-asset digital and the two-asset correlation options. We also present advanced binomial models for a multidimensional setting.