## Doctoral Thesis

### Refine

#### Year of publication

- 2006 (13) (remove)

#### Document Type

- Doctoral Thesis (13) (remove)

#### Keywords

- IMRT (2)
- Optimization (2)
- "Slender-Body"-Theorie (1)
- Asymptotik (1)
- Beam orientation (1)
- Beschichtungsprozess (1)
- Bewertung (1)
- CDSwaption (1)
- Charakter <Gruppentheorie> (1)
- Coarse graining (1)

#### Faculty / Organisational entity

- Fachbereich Mathematik (13) (remove)

Traffic flow on road networks has been a continuous source of challenging mathematical problems. Mathematical modelling can provide an understanding of dynamics of traffic flow and hence helpful in organizing the flow through the network. In this dissertation macroscopic models for the traffic flow in road networks are presented. The primary interest is the extension of the existing macroscopic road network models based on partial differential equations (PDE model). In order to overcome the difficulty of high computational costs of PDE model an ODE model has been introduced. In addition, steady state traffic flow model named as RSA model on road networks has been dicsussed. To obtain the optimal flow through the network cost functionals and corresponding optimal control problems are defined. The solution of these optimization problems provides an information of shortest path through the network subject to road conditions. The resulting constrained optimization problem is solved approximately by solving unconstrained problem invovling exact penalty functions and the penalty parameter. A good estimate of the threshold of the penalty parameter is defined. A well defined algorithm for solving a nonlinear, nonconvex equality and bound constrained optimization problem is introduced. The numerical results on the convergence history of the algorithm support the theoretical results. In addition to this, bottleneck situations in the traffic flow have been treated using a domain decomposition method (DDM). In particular this method could be used to solve the scalar conservation laws with the discontinuous flux functions corresponding to other physical problems too. This method is effective even when the flux function presents more than one discontinuity within the same spatial domain. It is found in the numerical results that the DDM is superior to other schemes and demonstrates good shock resolution.

Tropical geometry is a rather new field of algebraic geometry. The main idea is to replace algebraic varieties by certain piece-wise linear objects in R^n, which can be studied with the aid of combinatorics. There is hope that many algebraically difficult operations become easier in the tropical setting, as the structure of the objects seems to be simpler. In particular, tropical geometry shows promise for application in enumerative geometry. Enumerative geometry deals with the counting of geometric objects that are determined by certain incidence conditions. Until around 1990, not many enumerative questions had been answered and there was not much prospect of solving more. But then Kontsevich introduced the moduli space of stable maps which turned out to be a very useful concept for the study of enumerative geometry. A well-known problem of enumerative geometry is to determine the numbers N_cplx(d,g) of complex genus g plane curves of degree d passing through 3d+g-1 points in general position. Mikhalkin has defined the analogous number N_trop(d,g) for tropical curves and shown that these two numbers coincide (Mikhalkin's Correspondence Theorem). Tropical geometry supplies many new ideas and concepts that could be helpful to answer enumerative problems. However, as a rather new field, tropical geometry has to be studied more thoroughly. This thesis is concerned with the ``translation'' of well-known facts of enumerative geometry to tropical geometry. More precisely, the main results of this thesis are: - a tropical proof of the invariance of N_trop(d,g) of the position of the 3d+g-1 points, - a tropical proof for Kontsevich's recursive formula to compute N_trop(d,0) and - a tropical proof of Caporaso's and Harris' algorithm to compute N_trop(d,g). All results were derived in joint work with my advisor Andreas Gathmann. (Note that tropical research is not restricted to the translation of classically well-known facts, there are actually new results shown by means of tropical geometry that have not been known before. For example, Mikhalkin gave a tropical algorithm to compute the Welschinger invariant for real curves. This shows that tropical geometry can indeed be a tool for a better understanding of classical geometry.)

This work deals with the mathematical modeling and numerical simulation of the dynamics of a curved inertial viscous Newtonian fiber, which is practically applicable to the description of centrifugal spinning processes of glass wool. Neglecting surface tension and temperature dependence, the fiber flow is modeled as a three-dimensional free boundary value problem via instationary incompressible Navier-Stokes equations. From regular asymptotic expansions in powers of the slenderness parameter leading-order balance laws for mass (cross-section) and momentum are derived that combine the unrestricted motion of the fiber center-line with the inner viscous transport. The physically reasonable form of the one-dimensional fiber model results thereby from the introduction of the intrinsic velocity that characterizes the convective terms. For the numerical simulation of the derived model a finite volume code is developed. The results of the numerical scheme for high Reynolds numbers are validated by comparing them with the analytical solution of the inviscid problem. Moreover, the influence of parameters, like viscosity and rotation on the fiber dynamics are investigated. Finally, an application based on industrial data is performed.