## Dissertation

### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Dissertation (226) (entfernen)

#### Schlagworte

#### Fachbereich / Organisatorische Einheit

- Fachbereich Mathematik (226) (entfernen)

Structure and Construction of Instanton Bundles on P3

The study of families of curves with prescribed singularities has a long tradition. Its foundations were laid by Plücker, Severi, Segre, and Zariski at the beginning of the 20th century. Leading to interesting results with applications in singularity theory and in the topology of complex algebraic curves and surfaces it has attained the continuous attraction of algebraic geometers since then. Throughout this thesis we examine the varieties V(D,S1,...,Sr) of irreducible reduced curves in a fixed linear system |D| on a smooth projective surface S over the complex numbers having precisely r singular points of types S1,...,Sr. We are mainly interested in the following three questions: 1) Is V(D,S1,...,Sr) non-empty? 2) Is V(D,S1,...,Sr) T-smooth, that is smooth of the expected dimension? 3) Is V(D,S1,...Sr) irreducible? We would like to answer the questions in such a way that we present numerical conditions depending on invariants of the divisor D and of the singularity types S1,...,Sr, which ensure a positive answer. The main conditions which we derive will be of the type inv(S1)+...+inv(Sr) < aD^2+bD.K+c, where inv is some invariant of singularity types, a, b and c are some constants, and K is some fixed divisor. The case that S is the projective plane has been very well studied by many authors, and on other surfaces some results for curves with nodes and cusps have been derived in the past. We, however, consider arbitrary singularity types, and the results which we derive apply to large classes of surfaces, including surfaces in projective three-space, K3-surfaces, products of curves and geometrically ruled surfaces.

Abstract
The main theme of this thesis is about Graph Coloring Applications and Defining Sets in Graph Theory.
As in the case of block designs, finding defining sets seems to be difficult problem, and there is not a general conclusion. Hence we confine us here to some special types of graphs like bipartite graphs, complete graphs, etc.
In this work, four new concepts of defining sets are introduced:
• Defining sets for perfect (maximum) matchings
• Defining sets for independent sets
• Defining sets for edge colorings
• Defining set for maximal (maximum) clique
Furthermore, some algorithms to find and construct the defining sets are introduced. A review on some known kinds of defining sets in graph theory is also incorporated, in chapter 2 the basic definitions and some relevant notations used in this work are introduced.
chapter 3 discusses the maximum and perfect matchings and a new concept for a defining set for perfect matching.
Different kinds of graph colorings and their applications are the subject of chapter 4.
Chapter 5 deals with defining sets in graph coloring. New results are discussed along with already existing research results, an algorithm is introduced, which enables to determine a defining set of a graph coloring.
In chapter 6, cliques are discussed. An algorithm for the determination of cliques using their defining sets. Several examples are included.

Matrix Compression Methods for the Numerical Solution of Radiative Transfer in Scattering Media
(2002)

Radiative transfer in scattering media is usually described by the radiative transfer equation, an integro-differential equation which describes the propagation of the radiative intensity along a ray. The high dimensionality of the equation leads to a very large number of unknowns when discretizing the equation. This is the major difficulty in its numerical solution. In case of isotropic scattering and diffuse boundaries, the radiative transfer equation can be reformulated into a system of integral equations of the second kind, where the position is the only independent variable. By employing the so-called momentum equation, we derive an integral equation, which is also valid in case of linear anisotropic scattering. This equation is very similar to the equation for the isotropic case: no additional unknowns are introduced and the integral operators involved have very similar mapping properties. The discretization of an integral operator leads to a full matrix. Therefore, due to the large dimension of the matrix in practical applcation, it is not feasible to assemble and store the entire matrix. The so-called matrix compression methods circumvent the assembly of the matrix. Instead, the matrix-vector multiplications needed by iterative solvers are performed only approximately, thus, reducing, the computational complexity tremendously. The kernels of the integral equation describing the radiative transfer are very similar to the kernels of the integral equations occuring in the boundary element method. Therefore, with only slight modifications, the matrix compression methods, developed for the latter are readily applicable to the former. As apposed to the boundary element method, the integral kernels for radiative transfer in absorbing and scattering media involve an exponential decay term. We examine how this decay influences the efficiency of the matrix compression methods. Further, a comparison with the discrete ordinate method shows that discretizing the integral equation may lead to reductions in CPU time and to an improved accuracy especially in case of small absorption and scattering coefficients or if local sources are present.

In this work we present and estimate an explanatory model with a predefined system of explanatory equations, a so called lag dependent model. We present a locally optimal, on blocked neural network based lag estimator and theorems about consistensy. We define the change points in context of lag dependent model, and present a powerfull algorithm for change point detection in high dimensional high dynamical systems. We present a special kind of bootstrap for approximating the distribution of statistics of interest in dependent processes.

Different aspects of geomagnetic field modelling from satellite data are examined in the framework of modern multiscale approximation. The thesis is mostly concerned with wavelet techniques, i.e. multiscale methods based on certain classes of kernel functions which are able to realize a multiscale analysis of the funtion (data) space under consideration. It is thus possible to break up complicated functions like the geomagnetic field, electric current densities or geopotentials into different pieces and study these pieces separately. Based on a general approach to scalar and vectorial multiscale methods, topics include multiscale denoising, crustal field approximation and downward continuation, wavelet-parametrizations of the magnetic field in Mie-representation as well as multiscale-methods for the analysis of time-dependent spherical vector fields. For each subject the necessary theoretical framework is established and numerical applications examine and illustrate the practical aspects.

One crucial assumption of continuous financial mathematics is that the portfolio can be rebalanced continuously and that there are no transaction costs. In reality, this of course does not work. On the one hand, continuous rebalancing is impossible, on the other hand, each transaction causes costs which have to be subtracted from the wealth. Therefore, we focus on trading strategies which are based on discrete rebalancing - in random or equidistant times - and where transaction costs are considered. These strategies are considered for various utility functions and are compared with the optimal ones of continuous trading.

The immiscible lattice BGK method for solving the two-phase incompressible Navier-Stokes equations is analysed in great detail. Equivalent moment analysis and local differential geometry are applied to examine how interface motion is determined and how surface tension effects can be included such that consistency to the two-phase incompressible Navier-Stokes equations can be expected. The results obtained from theoretical analysis are verified by numerical experiments. Since the intrinsic interface tracking scheme of immiscible lattice BGK is found to produce unsatisfactory results in two-dimensional simulations several approaches to improving it are discussed but all of them turn out to yield no substantial improvement. Furthermore, the intrinsic interface tracking scheme of immiscible lattice BGK is found to be closely connected to the well-known conservative volume tracking method. This result suggests to couple the conservative volume tracking method for determining interface motion with the Navier-Stokes solver of immiscible lattice BGK. Applied to simple flow fields, this coupled method yields much better results than plain immiscible lattice BGK.

The dissertation is concerned with the numerical solution of Fokker-Planck equations in high dimensions arising in the study of dynamics of polymeric liquids. Traditional methods based on tensor product structure are not applicable in high dimensions for the number of nodes required to yield a fixed accuracy increases exponentially with the dimension; a phenomenon often referred to as the curse of dimension. Particle methods or finite point set methods are known to break the curse of dimension. The Monte Carlo method (MCM) applied to such problems are 1/sqrt(N) accurate, where N is the cardinality of the point set considered, independent of the dimension. Deterministic version of the Monte Carlo method called the quasi Monte Carlo method (QMC) are quite effective in integration problems and accuracy of the order of 1/N can be achieved, up to a logarithmic factor. However, such a replacement cannot be carried over to particle simulations due to the correlation among the quasi-random points. The method proposed by Lecot (C.Lecot and F.E.Khettabi, Quasi-Monte Carlo simulation of diffusion, Journal of Complexity, 15 (1999), pp.342-359) is the only known QMC approach, but it not only leads to large particle numbers but also the proven order of convergence is 1/N^(2s) in dimension s. We modify the method presented there, in such a way that the new method works with reasonable particle numbers even in high dimensions and has better order of convergence. Though the provable order of convergence is 1/sqrt(N), the results show less variance and thus the proposed method still slightly outperforms standard MCM.