## Doctoral Thesis

### Refine

#### Year of publication

- 2005 (16) (remove)

#### Document Type

- Doctoral Thesis (16) (remove)

#### Keywords

#### Faculty / Organisational entity

- Fachbereich Mathematik (16) (remove)

An autoregressive-ARCH model with possible exogeneous variables is treated. We estimate the conditional volatility of the model by applying feedforward networks to the residuals and prove consistency and asymptotic normality for the estimates under the rate of feedforward networks complexity. Recurrent neural networks estimates of GARCH and value-at-risk is studied. We prove consistency and asymptotic normality for the recurrent neural networks ARMA estimator under the rate of recurrent networks complexity. We also overcome the estimation problem in stochastic variance models in discrete time by feedforward networks and the introduction of a new distributions on the innovations. We use the method to calculate market risk such as expected shortfall and Value-at risk. We tested this distribution together with other new distributions on the GARCH family models against other common distributions on the financial market such as Normal Inverse Gaussian, normal and the Student's t- distributions. As an application of the models, some German stocks are studied and the different approaches are compared together with the most common method of GARCH(1,1) fit.

In this thesis we have discussed the problem of decomposing an integer matrix \(A\) into a weighted sum \(A=\sum_{k \in {\mathcal K}} \alpha_k Y^k\) of 0-1 matrices with the strict consecutive ones property. We have developed algorithms to find decompositions which minimize the decomposition time \(\sum_{k \in {\mathcal K}} \alpha_k\) and the decomposition cardinality \(|\{ k \in {\mathcal K}: \alpha_k > 0\}|\). In the absence of additional constraints on the 0-1 matrices \(Y^k\) we have given an algorithm that finds the minimal decomposition time in \({\mathcal O}(NM)\) time. For the case that the matrices \(Y^k\) are restricted to shape matrices -- a restriction which is important in the application of our results in radiotherapy -- we have given an \({\mathcal O}(NM^2)\) algorithm. This is achieved by solving an integer programming formulation of the problem by a very efficient combinatorial algorithm. In addition, we have shown that the problem of minimizing decomposition cardinality is strongly NP-hard, even for matrices with one row (and thus for the unconstrained as well as the shape matrix decomposition). Our greedy heuristics are based on the results for the decomposition time problem and produce better results than previously published algorithms.

In the first part of this work, called Simple node singularity, are computed matrix factorizations of all isomorphism classes, up to shiftings, of rank one and two, graded, indecomposable maximal Cohen--Macaulay (shortly MCM) modules over the affine cone of the simple node singularity. The subsection 2.2 contains a description of all rank two graded MCM R-modules with stable sheafification on the projective cone of R, by their matrix factorizations. It is given also a general description of such modules, of any rank, over a projective curve of arithmetic genus 1, using their matrix factorizations. The non-locally free rank two MCM modules are computed using an alghorithm presented in the Introduction of this work, that gives a matrix factorization of any extension of two MCM modules over a hypersurface. In the second part, called Fermat surface, are classified all graded, rank two, MCM modules over the affine cone of the Fermat surface. For the classification of the orientable rank two graded MCM R-modules, is used a description of the orientable modules (over normal rings) with the help of codimension two Gorenstein ideals, realized by Herzog and Kühl. It is proven (in section 4), that they have skew symmetric matrix factorizations (over any normal hypersurface ring). For the classification of the non-orientable rank two MCM R-modules, we use a similar idea as in the case of the orientable ones, only that the ideal is not any more Gorenstein.

This thesis investigates the constrained form of the spherical Minimax location problem and the spherical Weber location problem. Specifically, we consider the problem of locating a new facility on the surface of the unit sphere in the presence of convex spherical polygonal restricted regions and forbidden regions such that the maximum weighted distance from the new facility on the surface of the unit sphere to m existing facilities is minimized and the sum of the weighted distance from the new facility on the surface of the unit sphere to m existing facilities is minimized. It is assumed that a forbidden region is an area on the surface of the unit sphere where travel and facility location are not permitted and that distance is measured using the great circle arc distance. We represent a polynomial time algorithm for the spherical Minimax location problem for the special case where all the existing facilities are located on the surface of a hemisphere. Further, we have developed algorithms for spherical Weber location problem using barrier distance on a hemisphere as well as on the unit sphere.

In this dissertation a model of melt spinning (by Doufas, McHugh and Miller) has been investigated. The model (DMM model) which takes into account effects of inertia, air drag, gravity and surface tension in the momentum equation and heat exchange between air and fibre surface, viscous dissipation and crystallization in the energy equation also has a complicated coupling with the microstructure. The model has two parts, before onset of crystallization (BOC) and after onset of crystallization (AOC) with the point of onset of crystallization as the unknown interface. Mathematically the model has been formulated as a Free boundary value problem. Changes have been introduced in the model with respect to the air drag and an interface condition at the free boundary. The mathematical analysis of the nonlinear, coupled free boundary value problem shows that the solution of this problem depends heavily on initial conditions and parameters which renders the global analysis impossible. But by defining a physically acceptable solution, it is shown that for a more restricted set of initial conditions if a unique solution exists for IVP BOC then it is physically acceptable. For this the important property of the positivity of the conformation tensor variables has been proved. Further it is shown that if a physically acceptable solution exists for IVP BOC then under certain conditions it also exists for IVP AOC. This gives an important relation between the initial conditions of IVP BOC and the existence of a physically acceptable solution of IVP AOC. A new investigation has been done for the melt spinning process in the framework of classical mechanics. A Hamiltonian formulation has been done for the melt spinning process for which appropriate Poisson brackets have been derived for the 1-d, elongational flow of a viscoelastic fluid. From the Hamiltonian, cross sectionally averaged balance mass and momentum equations of melt spinning can be derived along with the microstructural equations. These studies show that the complicated problem of melt spinning can also be studied under the framework of classical mechanics. This work provides the basic groundwork on which further investigations on the dynamics of a fibre could be carried out. The Free boundary value problem has been solved numerically using shooting method. Matlab routines have been used to solve the IVPs arising in the problem. Some numerical case studies have been done to study the sensitivity of the ODE systems with respect to the initial guess and parameters. These experiments support the analysis done and throw more light on the stiff nature and ill posedness of the ODE systems. To validate the model, simulations have been performed on sets of data provided by the company. Comparison of numerical results (axial velocity profiles) has been done with the experimental profiles provided by the company. Numerical results have been found to be in excellent agreement with the experimental profiles.

In modern textile manufacturing industries, the function of human eyes to detect disturbances in the production processes which yield defective products is switched to cameras. The camera images are analyzed with various methods to detect these disturbances automatically. There are, however, still problems with in particular semi-regular textures which are typical for weaving patterns. We study three parts of that problem of automatic texture analysis: image smoothing, texture synthesis and defect detection. In image smoothing, we develop a two dimensional kernel smoothing method with locally and directionally adaptive bandwidths allowing correlation in the errors. Two approaches are used in synthesising texture. The first is based on constructing a generalized Ising energy function in the Markov Random Field setup, and for the second, we use two-dimensional periodic bootstrap methods for semi-regular texture synthesis. We treat defect detection as multihypothesis testing problem with the null hypothesis representing the absence of defects and the other hypotheses representing various types of defects. We develop a test based on a nonparametric regression setup, and we use the bootstrap for approximating the distribution of our test statistic.

This thesis contains the mathematical treatment of a special class of analog microelectronic circuits called translinear circuits. The goal is to provide foundations of a new coherent synthesis approach for this class of circuits. The mathematical methods of the suggested synthesis approach come from graph theory, combinatorics, and from algebraic geometry, in particular symbolic methods from computer algebra. Translinear circuits form a very special class of analog circuits, because they rely on nonlinear device models, but still allow a very structured approach to network analysis and synthesis. Thus, translinear circuits play the role of a bridge between the "unknown space" of nonlinear circuit theory and the very well exploited domain of linear circuit theory. The nonlinear equations describing the behavior of translinear circuits possess a strong algebraic structure that is nonetheless flexible enough for a wide range of nonlinear functionality. Furthermore, translinear circuits offer several technical advantages like high functional density, low supply voltage and insensitivity to temperature. This unique profile is the reason that several authors consider translinear networks as the key to systematic synthesis methods for nonlinear circuits. The thesis proposes the usage of a computer-generated catalog of translinear network topologies as a synthesis tool. The idea to compile such a catalog has grown from the observation that on the one hand, the topology of a translinear network must satisfy strong constraints which severely limit the number of "admissible" topologies, in particular for networks with few transistors, and on the other hand, the topology of a translinear network already fixes its essential behavior, at least for static networks, because the so-called translinear principle requires the continuous parameters of all transistors to be the same. Even though the admissible topologies are heavily restricted, it is a highly nontrivial task to compile such a catalog. Combinatorial techniques have been adapted to undertake this task. In a catalog of translinear network topologies, prototype network equations can be stored along with each topology. When a circuit with a specified behavior is to be designed, one can search the catalog for a network whose equations can be matched with the desired behavior. In this context, two algebraic problems arise: To set up a meaningful equation for a network in the catalog, an elimination of variables must be performed, and to test whether a prototype equation from the catalog and a specified equation of desired behavior can be "matched", a complex system of polynomial equations must be solved, where the solutions are restricted to a finite set of integers. Sophisticated algorithms from computer algebra are applied in both cases to perform the symbolic computations. All mentioned algorithms have been implemented using C++, Singular, and Mathematica, and are successfully applied to actual design problems of humidity sensor circuitry at Analog Microelectronics GmbH, Mainz. As result of the research conducted, an exhaustive catalog of all static formal translinear networks with at most eight transistors is available. The application for the humidity sensor system proves the applicability of the developed synthesis approach. The details and implementations of the algorithms are worked out only for static networks, but can easily be adopted for dynamic networks as well. While the implementation of the combinatorial algorithms is stand-alone software written "from scratch" in C++, the implementation of the algebraic algorithms, namely the symbolic treatment of the network equations and the match finding, heavily rely on the sophisticated Gröbner basis engine of Singular and thus on more than a decade of experience contained in a special-purpose computer algebra system. It should be pointed out that the thesis contains the new observation that the translinear loop equations of a translinear network are precisely represented by the toric ideal of the network's translinear digraph. Altogether, this thesis confirms and strengthenes the key role of translinear circuits as systematically designable nonlinear circuits.

We work in the setting of time series of financial returns. Our starting point are the GARCH models, which are very common in practice. We introduce the possibility of having crashes in such GARCH models. A crash will be modeled by drawing innovations from a distribution with much mass on extremely negative events, while in ''normal'' times the innovations will be drawn from a normal distribution. The probability of a crash is modeled to be time dependent, depending on the past of the observed time series and/or exogenous variables. The aim is a splitting of risk into ''normal'' risk coming mainly from the GARCH dynamic and extreme event risk coming from the modeled crashes. We will present several incarnations of this modeling idea and give some basic properties like the conditional first and second moments. For the special case that we just have an ARCH dynamic we can establish geometric ergodicity and, thus, stationarity and mixing conditions. Also in the ARCH case we formulate (quasi) maximum likelihood estimators and can derive conditions for consistency and asymptotic normality of the parameter estimates. In a special case of genuine GARCH dynamic we are able to establish L_1-approximability and hence laws of large numbers for the processes itself. We can formulate a conditional maximum likelihood estimator in this case, but cannot completely establish consistency for them. On the practical side we look for the outcome of estimating models with genuine GARCH dynamic and compare the result to classical GARCH models. We apply the models to Value at Risk estimation and see that in comparison to the classical models many of ours seem to work better although we chose the crash distributions quite heuristically.

It is considered an analytical model of defaultable bond portfolio in terms of its face value process. The face value process dynamically evolves with time and incorporates changes caused by recovery payment on default followed by purchasing of new bonds. The further studies involve properties, distribution and control of the face value process.

Non-commutative polynomial algebras appear in a wide range of applications, from quantum groups and theoretical physics to linear differential and difference equations. In the thesis, we have developed a framework, unifying many important algebras in the classes of \(G\)- and \(GR\)-algebras and studied their ring-theoretic properties. Let \(A\) be a \(G\)-algebra in \(n\) variables. We establish necessary and sufficient conditions for \(A\) to have a Poincar'e-Birkhoff-Witt (PBW) basis. Further on, we show that besides the existence of a PBW basis, \(A\) shares some other properties with the commutative polynomial ring \(\mathbb{K}[x_1,\ldots,x_n]\). In particular, \(A\) is a Noetherian integral domain of Gel'fand-Kirillov dimension \(n\). Both Krull and global homological dimension of \(A\) are bounded by \(n\); we provide examples of \(G\)-algebras where these inequalities are strict. Finally, we prove that \(A\) is Auslander-regular and a Cohen-Macaulay algebra. In order to perform symbolic computations with modules over \(GR\)-algebras, we generalize Gröbner bases theory, develop and respectively enhance new and existing algorithms. We unite the most fundamental algorithms in a suite of applications, called "Gröbner basics" in the literature. Furthermore, we discuss algorithms appearing in the non-commutative case only, among others two-sided Gröbner bases for bimodules, annihilators of left modules and operations with opposite algebras. An important role in Representation Theory is played by various subalgebras, like the center and the Gel'fand-Zetlin subalgebra. We discuss their properties and their relations to Gröbner bases, and briefly comment some aspects of their computation. We proceed with these subalgebras in the chapter devoted to the algorithmic study of morphisms between \(GR\)-algebras. We provide new results and algorithms for computing the preimage of a left ideal under a morphism of \(GR\)-algebras and show both merits and limitations of several methods that we propose. We use this technique for the computation of the kernel of a morphism, decomposition of a module into central characters and algebraic dependence of pairwise commuting elements. We give an algorithm for computing the set of one-dimensional representations of a \(G\)-algebra \(A\), and prove, moreover, that if the set of finite dimensional representations of \(A\) over a ground field \(K\) is not empty, then the homological dimension of \(A\) equals \(n\). All the algorithms are implemented in a kernel extension Plural of the computer algebra system Singular. We discuss the efficiency of computations and provide a comparison with other computer algebra systems. We propose a collection of benchmarks for testing the performance of algorithms; the comparison of timings shows that our implementation outperforms all of the modern systems with the combination of both broad functionality and fast implementation. In the thesis, there are many new non-trivial examples, and also the solutions to various problems, arising in different fields of mathematics. All of them were obtained with the developed theory and the implementation in Plural, most of them are treated computationally in this thesis for the first time.