## Diploma Thesis

### Refine

#### Year of publication

#### Document Type

- Diploma Thesis (22) (remove)

#### Language

- English (22) (remove)

#### Keywords

#### Faculty / Organisational entity

* naive examples which show drawbacks of discrete wavelet transform and windowed Fourier transform; * adaptive partition (with a 'best basis' approach) of speech-like signals by means of local trigonometric bases with orthonormal windows. * extraction of formant-like features from the cosine transform; * further proceedingings for classification of vowels or voiced speech are suggested at the end.

Using covering problems (CoP) combined with binary search is a well-known and successful solution approach for solving continuous center problems. In this thesis, we show that this is also true for center hub location problems in networks. We introduce and compare various formulations for hub covering problems (HCoP) and analyse the feasibility polyhedron of the most promising one. Computational results using benchmark instances are presented. These results show that the new solution approach performs better in most examples.

Aggregation of Large-Scale Network Flow Problems with Application to Evacuation Planning at SAP
(2005)

Our initial situation is as follows: The blueprint of the ground floor of SAP’s main building the EVZ is given and the open question on how mathematic can support the evacuation’s planning process ? To model evacuation processes in advance as well as for existing buildings two models can be considered: macro- and microscopic models. Microscopic models emphasize the individual movement of evacuees. These models consider individual parameters such as walking speed, reaction time or physical abilities as well as the interaction of evacuees during the evacuation process. Because of the fact that the microscopic model requires lots of data, simulations are taken for implementation. Most of the current approaches concerning simulation are based on cellular automats. In contrast to microscopic models, macroscopic models do not consider individual parameters such as the physical abilities of the evacuees. This means that the evacuees are treated as a homogenous group for which only common characteristics are considered; an average human being is assumed. We do not have that much data as in the case of the microscopic models. Therefore, the macroscopic models are mainly based on optimization approaches. In most cases, a building or any other evacuation object is represented through a static network. A time horizon T is added, in order to be able to describe the evolution of the evacuation process over time. Connecting these two components we finally get a dynamic network. Based on this network, dynamic network flow problems are formulated, which can map evacuation processes. We focused on the macroscopic model in our thesis. Our main focus concerning the transfer from the real world problem (e.g. supporting the evacuation planning) will be the modeling of the blueprint as a dynamic network. After modeling the blueprint as a dynamic network, it will be no problem to give a formulation of a dynamic network flow problem, the so-called evacuation problem, which seeks for an optimal evacuation time. However, we have to solve a static large-scale network flow problem to derive a solution for this formulation. In order to reduce the network size, we will examine the possibility of applying aggregation to the evacuation problem. Aggregation (lat. aggregare = piling, affiliate; lat. aggregatio = accumulation, union; the act of gathering something together) was basically used to reduce the size of general large-scale linear or integer programs. The results gained for the general problem definitions were then applied to the transportation problem and the minimum cost network flow problem. We review this theory in detail and look on how results derived there can be used for the evacuation problem, too.

This diploma thesis examines logistic problems occurring in a container terminal. The thesis focuses on the scheduling of cranes handling containers in a port. Two problems are discussed in detail: the yard crane scheduling of rubber-tired gantry cranes (RMGC) which move freely among the container blocks, and the scheduling of rail-mounted gantry cranes (RMGC) which can only move within a yard zone. The problems are formulated as integer programs. For each of the two problems discussed, two models are presented: In one model, the crane tasks are interpreted as jobs with release times and processing times while in the other model, it is assumed that the tasks can be modeled as generic workload measured in crane minutes. It is shown that the problems are NP-hard in the strong sense. Heuristic solution procedures are developed and evaluated by numerical results. Further ideas which could lead to other solution procedures are presented and some interesting special cases are discussed.

Satellite-to-satellite tracking (SST) and satellite gravity gradiometry (SGG), respectively, are two measurement principles in modern satellite geodesy which yield knowledge of the first and second order radial derivative of the earth's gravitational potential at satellite altitude, respectively. A numerical method to compute the gravitational potential on the earth's surface from those observations should be capable of processing huge amounts of observational data. Moreover, it should yield a reconstruction of the gravitational potential at different levels of detail, and it should be possible to reconstruct the gravitational potential from only locally given data. SST and SGG are modeled as ill-posed linear pseudodifferential operator equations with an injective but non-surjective compact operator, which operates between Sobolev spaces of harmonic functions and such ones consisting of their first and second order radial derivatives, respectively. An immediate discretization of the operator equation is obtained by replacing the signal on its right-hand-side either by an interpolating or a smoothing spline which approximates the observational data. Here the noise level and the spatial distribution of the data determine whether spline-interpolation or spline-smoothing is appropriate. The large full linear equation system with positive definite matrix which occurs in the spline-interplation and spline-smoothing problem, respectively, is efficiently solved with the help of the Schwarz alternating algorithm, a domain decomposition method which allows it to split the large linear equation system into several smaller ones which are then solved alernatingly in an iterative procedure. Strongly space-localizing regularization scaling functions and wavelets are used to obtain a multiscale reconstruction of the gravitational potential on the earth's surface. In a numerical experiment the advocated method is successfully applied to reconstruct the earth's gravitational potential from simulated 'exact' and 'error-affected' SGG data on a spherical orbit, using Tikhonov regularization. The applicability of the numerical method is, however, not restricted to data given on a closed orbit but it can also cope with realistic satellite data.

While there exist closed-form solutions for vanilla options in the presence of stochastic volatility for nearly a decade, practitioners still depend on numerical methods - in particular the Finite Difference and Monte Carlo methods - in the case of double barrier options. It was only recently that Lipton proposed (semi-)analytical solutions for this special class of path-dependent options. Although he presents two different approaches to derive these solutions, he restricts himself in both cases to a less general model, namely one where the correlation and the interest rate differential are assumed to be zero. Naturally the question arises, if these methods are still applicable for the general stochastic volatility model without these restrictions. In this paper we show that such a generalization fails for both methods. We will explain why this is the case and discuss the consequences of our results.

The flow of a liquid into an empty channel is simulated. The simulation is based on a recently published model for general fluid/liquid/solid systems which eliminates the shear stress singularity at the moving contact line between the liquid/fluid interface and the solid. This model is carefully analyzed for low Reynolds and Capillary numbers, adapted to the channel inflow problem, and implemented. Very convincing numerical results are presented.

Matrices with the consecutive ones property and interval graphs are important notations in the field of applied mathematics. We give a theoretical picture of them in first part. We present the earliest work in interval graphs and matrices with the consecutive ones property pointing out the close relation between them. We pay attention to Tucker's structure theorem on matrices with the consecutive ones property as an essential step that requires a deep considerations. Later on we concentrate on some recent work characterizing the matrices with the consecutive ones property and matrices related to them in the terms of interval digraphs as the latest and most interesting outlook on our topic. Within this framework we introduce a classiffcation of matrices with consecutive ones property and matrices related to them. We describe the applications of matrices with the consecutive ones property and interval graphs in different fields. We make sure to give a general view of application and their close relation to our studying phenomena. Sometimes we mention algorithms that work in certain fields. In the third part we give a polyhedral approach to matrices with the consecutive ones property. We present the weighted consecutive ones problem and its relation to Tucker's matrices. The constraints of the weighted consecutive ones problem are improved by introducing stronger inequalities, based on the latest theorems on polyhedral aspect of consecutive ones property. Finally we implement a separation algorithm of Oswald and Reinhelt on matrices with the consecutive ones property. We would like to mention that we give a complete proof to the theorems when we consider important within our framework. We prove theorems partially when it is worthwhile to have a closer look, and we omit the proof when there are is only an intersection with our studying phenomena.