## Schriften zur Funktionalanalysis und Geomathematik

### Filtern

#### Dokumenttyp

- Preprint (30)
- Bericht (5)
- Arbeitspapier (1)

#### Sprache

- Englisch (36) (entfernen)

#### Volltext vorhanden

- ja (36) (entfernen)

#### Schlagworte

- Inverses Problem (6)
- Wavelet (6)
- Approximation (4)
- Mehrskalenanalyse (4)
- Galerkin-Methode (3)
- Kugelflächenfunktion (3)
- Regularisierung (3)
- Spline (3)
- Wavelet-Analyse (3)
- CHAMP <Satellitenmission> (2)

- 48
- Locally Supported Wavelets for the Separation of Spherical Vector Fields with Respect to their Sources (2011)
- We provide a space domain oriented separation of magnetic fields into parts generated by sources in the exterior and sources in the interior of a given sphere. The separation itself is well-known in geomagnetic modeling, usually in terms of a spherical harmonic analysis or a wavelet analysis that is spherical harmonic based. However, it can also be regarded as a modification of the Helmholtz decomposition for which we derive integral representations with explicitly known convolution kernels. Regularizing these singular kernels allows a multiscale representation of the magnetic field with locally supported wavelets. This representation is applied to a set of CHAMP data for crustal field modeling.

- 46
- Limit Formulae and Jump Relations of Potential Theory in Sobolev Spaces (2009)
- In this article we combine the modern theory of Sobolev spaces with the classical theory of limit formulae and jump relations of potential theory. Also other authors proved the convergence in Lebesgue spaces for integrable functions. The achievement of this paper is the L2 convergence for the weak derivatives of higher orders. Also the layer functions F are elements of Sobolev spaces and a two dimensional suitable smooth submanifold in R3, called regular Cm-surface. We are considering the potential of the single layer, the potential of the double layer as well as their first order normal derivatives. Main tool is the convergence in Cm-norm which is proved with help of some results taken from [14]. Additionally, we need a result about the limit formulae in L2-norm, which can be found in [16], and a reduction result which we took from [19]. Moreover we prove the convergence in the Hölder spaces Cm,alpha. Finally, we give an application of the limit formulae and jump relations to Geomathematics. We generalize a density results, see e.g. [11], from L2 to Hm,2. For it we prove the limit formula for U1 in (Hm,2)' also.

- 44
- Spherical Fast Multiscale Approximation by Locally Compact Orthogonal Wavelets (2009)
- Using a stereographical projection to the plane we construct an O(N log(N)) algorithm to approximate scattered data in N points by orthogonal, compactly supported wavelets on the surface of a 2-sphere or a local subset of it. In fact, the sphere is not treated all at once, but is split into subdomains whose results are combined afterwards. After choosing the center of the area of interest the scattered data points are mapped from the sphere to the tangential plane through that point. By combining a k-nearest neighbor search algorithm and the two dimensional fast wavelet transform a fast approximation of the data is computed and mapped back to the sphere. The algorithm is tested with nearly 1 million data points and yields an approximation with 0.35% relative errors in roughly 2 minutes on a standard computer using our MATLAB implementation. The method is very flexible and allows the application of the full range of two dimensional wavelets.

- 43
- The outer oblique boundary problem of potential theory (2009)
- In this article we prove existence and uniqueness results for solutions to the outer oblique boundary problem for the Poisson equation under very weak assumptions on boundary, coefficients and inhomogeneities. Main tools are the Kelvin transformation and the solution operator for the regular inner problem, provided in [1]. Moreover we prove regularisation results for the weak solutions of both, the inner and the outer problem. We investigate the non-admissible direction for the oblique vector field, state results with stochastic inhomogeneities and provide a Ritz-Galerkinm approximation. The results are applicable to problems from Geomathematics, see e.g. [2] and [3].

- 41
- On Mathematical Aspects of a Combined Inversion of Gravity and Normal Mode Variations by a Spline Method (2008)
- This paper provides a brief overview of two linear inverse problems concerned with the determination of the Earth’s interior: inverse gravimetry and normal mode tomography. Moreover, a vector spline method is proposed for a combined solution of both problems. This method uses localised basis functions, which are based on reproducing kernels, and is related to approaches which have been successfully applied to the inverse gravimetric problem and the seismic traveltime tomography separately.

- 40
- Speech Recognition Support of Assisted Living (2008)
- We present results and views about a project in assisted living. The scenario is a room in which an elderly and/or disabled person lives who is not able to perform certain actions due to restricted mobility. We enable the person to express commands verbally that will then be executed automatically. There are several severe problems involved that complicate the situation. The person may utter the command in a rather unexpected way, the person makes an error or the action cannot be performed due to several reasons. In our approach we present an architecture with three components: The recognition component that contains novel features in the signal processing, the analysis component that logically analyzes the command, and the execution component that performs the action automatically. All three components communicate with each other.

- 39
- Classical Globally Reflected Gravity Field Determination in Modern Locally Oriented Multiscale Framework (2008)
- The purpose of this paper is the canonical connection of classical global gravity field determination following the concept of Stokes (1849), Bruns (1878), and Neumann (1887) on the one hand and modern locally oriented multiscale computation by use of adaptive locally supported wavelets on the other hand. Essential tools are regularization methods of the Green, Neumann, and Stokes integral representations. The multiscale approximation is guaranteed simply as linear difference scheme by use of Green, Neumann, and Stokes wavelets, respectively. As an application, gravity anomalies caused by plumes are investigated for the Hawaiian and Iceland areas.

- 37
- On the Completeness and Closure of Vector and Tensor Spherical Harmonics (2008)
- An intrinsically on the 2-sphere formulated proof of the closure and completeness of spherical harmonics is given in vectorial and tensorial framework. The considerations are essentially based on vector and tensor approximation in terms of zonal vector and tensor Bernstein kernels, respectively.

- 36
- Time-Space Multiscale Analysis by Use of Tensor Product Wavelets and its Application to Hydrology and GRACE Data (2007)
- This paper presents a wavelet analysis of temporal and spatial variations of the Earth's gravitational potential based on tensor product wavelets. The time--space wavelet concept is realized by combining Legendre wavelets for the time domain and spherical wavelets for the space domain. In consequence, a multiresolution analysis for both, temporal and spatial resolution, is formulated within a unified concept. The method is then numerically realized by using first synthetically generated data and, finally, several real data sets.

- 33
- Splines on the 3-dimensional Ball and their Application to Seismic Body Wave Tomography (2007)
- In this paper we construct spline functions based on a reproducing kernel Hilbert space to interpolate/approximate the velocity field of earthquake waves inside the Earth based on traveltime data for an inhomogeneous grid of sources (hypocenters) and receivers (seismic stations). Theoretical aspects including error estimates and convergence results as well as numerical results are demonstrated.