## Schriften zur Funktionalanalysis und Geomathematik

### Refine

#### Document Type

- Preprint (3) (remove)

#### Language

- English (3) (remove)

#### Has Fulltext

- yes (3) (remove)

#### Keywords

- Kugel (3) (remove)

30

We present a constructive theory for locally supported approximate identities on the unit ball in \(\mathbb{R}^3\). The uniform convergence of the convolutions of the derived kernels with an arbitrary continuous function \(f\) to \(f\), i.e. the defining property of an approximate identity, is proved. Moreover, an explicit representation for a class of such kernels is given. The original publication is available at www.springerlink.com

16

We introduce splines for the approximation of harmonic functions on a 3-dimensional ball. Those splines are combined with a multiresolution concept. More precisely, at each step of improving the approximation we add more data and, at the same time, reduce the hat-width of the used spline basis functions. Finally, a convergence theorem is proved. One possible application, that is discussed in detail, is the reconstruction of the Earth´s density distribution from gravitational data obtained at a satellite orbit. This is an exponentially ill-posed problem where only the harmonic part of the density can be recovered since its orthogonal complement has the potential 0. Whereas classical approaches use a truncated singular value decomposition (TSVD) with the well-known disadvantages like the non-localizing character of the used spherical harmonics and the bandlimitedness of the solution, modern regularization techniques use wavelets allowing a localized reconstruction via convolutions with kernels that are only essentially large in the region of interest. The essential remaining drawback of a TSVD and the wavelet approaches is that the integrals (i.e. the inner product in case of a TSVD and the convolution in case of wavelets) are calculated on a spherical orbit, which is not given in reality. Thus, simplifying modelling assumptions, that certainly include a modelling error, have to be made. The splines introduced here have the important advantage, that the given data need not be located on a sphere but may be (almost) arbitrarily distributed in the outer space of the Earth. This includes, in particular, the possibility to mix data from different satellite missions (different orbits, different derivatives of the gravitational potential) in the calculation of the Earth´s density distribution. Moreover, the approximating splines can be calculated at varying resolution scales, where the differences for increasing the resolution can be computed with the introduced spline-wavelet technique.

9

In this paper we introduce a multiscale technique for the analysis of deformation phenomena of the Earth. Classically, the basis functions under use are globally defined and show polynomial character. In consequence, only a global analysis of deformations is possible such that, for example, the water load of an artificial reservoir is hardly to model in that way. Up till now, the alternative to realize a local analysis can only be established by assuming the investigated region to be flat. In what follows we propose a local analysis based on tools (Navier scaling functions and wavelets) taking the (spherical) surface of the Earth into account. Our approach, in particular, enables us to perform a zooming-in procedure. In fact, the concept of Navier wavelets is formulated in such a way that subregions with larger or smaller data density can accordingly be modelled with a higher or lower resolution of the model, respectively.