## Schriften zur Funktionalanalysis und Geomathematik

### Refine

#### Document Type

- Preprint (32)
- Report (7)
- Working Paper (1)

#### Language

- English (40) (remove)

#### Keywords

- Wavelet (8)
- Inverses Problem (7)
- Mehrskalenanalyse (7)
- Approximation (5)
- Regularisierung (5)
- Kugel (4)
- Sphäre (4)
- CHAMP <Satellitenmission> (3)
- Galerkin-Methode (3)
- Gravimetrie (3)

50

This report gives an insight into basics of stress field simulations for geothermal reservoirs.
The quasistatic equations of poroelasticity are deduced from constitutive equations, balance
of mass and balance of momentum. Existence and uniqueness of a weak solution is shown.
In order of to find an approximate solution numerically, usage of the so–called method of
fundamental solutions is a promising way. The idea of this method as well as a sketch of
how convergence may be proven are given.

48

We provide a space domain oriented separation of magnetic fields into parts generated by sources in the exterior and sources in the interior of a given sphere. The separation itself is well-known in geomagnetic modeling, usually in terms of a spherical harmonic analysis or a wavelet analysis that is spherical harmonic based. However, it can also be regarded as a modification of the Helmholtz decomposition for which we derive integral representations with explicitly known convolution kernels. Regularizing these singular kernels allows a multiscale representation of the magnetic field with locally supported wavelets. This representation is applied to a set of CHAMP data for crustal field modeling.

44

Using a stereographical projection to the plane we construct an O(N log(N)) algorithm to approximate scattered data in N points by orthogonal, compactly supported wavelets on the surface of a 2-sphere or a local subset of it. In fact, the sphere is not treated all at once, but is split into subdomains whose results are combined afterwards. After choosing the center of the area of interest the scattered data points are mapped from the sphere to the tangential plane through that point. By combining a k-nearest neighbor search algorithm and the two dimensional fast wavelet transform a fast approximation of the data is computed and mapped back to the sphere. The algorithm is tested with nearly 1 million data points and yields an approximation with 0.35% relative errors in roughly 2 minutes on a standard computer using our MATLAB implementation. The method is very flexible and allows the application of the full range of two dimensional wavelets.

46

In this article we combine the modern theory of Sobolev spaces with the classical theory of limit formulae and jump relations of potential theory. Also other authors proved the convergence in Lebesgue spaces for integrable functions. The achievement of this paper is the L2 convergence for the weak derivatives of higher orders. Also the layer functions F are elements of Sobolev spaces and a two dimensional suitable smooth submanifold in R3, called regular Cm-surface. We are considering the potential of the single layer, the potential of the double layer as well as their first order normal derivatives. Main tool is the convergence in Cm-norm which is proved with help of some results taken from [14]. Additionally, we need a result about the limit formulae in L2-norm, which can be found in [16], and a reduction result which we took from [19]. Moreover we prove the convergence in the Hölder spaces Cm,alpha. Finally, we give an application of the limit formulae and jump relations to Geomathematics. We generalize a density results, see e.g. [11], from L2 to Hm,2. For it we prove the limit formula for U1 in (Hm,2)' also.

47

Due to the increasing demand of renewable energy production facilities, modeling geothermal reservoirs is a central issue in today's engineering practice. After over 40 years of study, many models have been proposed and applied to hundreds of sites worldwide. Nevertheless, with increasing computational capabilities new efficient methods are becoming available. The aim of this paper is to present recent progress on seismic processing as well as fluid and thermal flow simulations for porous and fractured subsurface systems. The commonly used methods in industrial energy exploration and production such as forward modeling, seismic migration, and inversion methods together with continuum and discrete flow models for reservoir monitoring and management are reviewed. Furthermore, for two specific features numerical examples are presented. Finally, future fields of studies are described.

43

In this article we prove existence and uniqueness results for solutions to the outer oblique boundary problem for the Poisson equation under very weak assumptions on boundary, coefficients and inhomogeneities. Main tools are the Kelvin transformation and the solution operator for the regular inner problem, provided in [1]. Moreover we prove regularisation results for the weak solutions of both, the inner and the outer problem. We investigate the non-admissible direction for the oblique vector field, state results with stochastic inhomogeneities and provide a Ritz-Galerkinm approximation. The results are applicable to problems from Geomathematics, see e.g. [2] and [3].

39

The purpose of this paper is the canonical connection of classical global gravity field determination following the concept of Stokes (1849), Bruns (1878), and Neumann (1887) on the one hand and modern locally oriented multiscale computation by use of adaptive locally supported wavelets on the other hand. Essential tools are regularization methods of the Green, Neumann, and Stokes integral representations. The multiscale approximation is guaranteed simply as linear difference scheme by use of Green, Neumann, and Stokes wavelets, respectively. As an application, gravity anomalies caused by plumes are investigated for the Hawaiian and Iceland areas.

41

This paper provides a brief overview of two linear inverse problems concerned with the determination of the Earth’s interior: inverse gravimetry and normal mode tomography. Moreover, a vector spline method is proposed for a combined solution of both problems. This method uses localised basis functions, which are based on reproducing kernels, and is related to approaches which have been successfully applied to the inverse gravimetric problem and the seismic traveltime tomography separately.

37

40

We present results and views about a project in assisted living. The scenario is a room in which an elderly and/or disabled person lives who is not able to perform certain actions due to restricted mobility. We enable the person to express commands verbally that will then be executed automatically. There are several severe problems involved that complicate the situation. The person may utter the command in a rather unexpected way, the person makes an error or the action cannot be performed due to several reasons. In our approach we present an architecture with three components: The recognition component that contains novel features in the signal processing, the analysis component that logically analyzes the command, and the execution component that performs the action automatically. All three components communicate with each other.

36

This paper presents a wavelet analysis of temporal and spatial variations of the Earth's gravitational potential based on tensor product wavelets. The time--space wavelet concept is realized by combining Legendre wavelets for the time domain and spherical wavelets for the space domain. In consequence, a multiresolution analysis for both, temporal and spatial resolution, is formulated within a unified concept. The method is then numerically realized by using first synthetically generated data and, finally, several real data sets.

33

In this paper we construct spline functions based on a reproducing kernel Hilbert space to interpolate/approximate the velocity field of earthquake waves inside the Earth based on traveltime data for an inhomogeneous grid of sources (hypocenters) and receivers (seismic stations). Theoretical aspects including error estimates and convergence results as well as numerical results are demonstrated.

31

This paper deals with the problem of determining the sea surface topography from geostrophic flow of ocean currents on local domains of the spherical Earth. In mathematical context the problem amounts to the solution of a spherical differential equation relating the surface curl gradient of a scalar field (sea surface topography) to a surface divergence-free vector field(geostrophic ocean flow). At first, a continuous solution theory is presented in the framework of an integral formula involving Green’s function of the spherical Beltrami operator. Different criteria derived from spherical vector analysis are given to investigate uniqueness. Second, for practical applications Green’s function is replaced by a regularized counterpart. The solution is obtained by a convolution of the flow field with a scaled version of the regularized Green function. Calculating locally without boundary correction would lead to errors near the boundary. To avoid these Gibbs phenomenona we additionally consider the boundary integral of the corresponding region on the sphere which occurs in the integral formula of the solution. For reasons of simplicity we discuss a spherical cap first, that means we consider a continuously differentiable (regular) boundary curve. In a second step we concentrate on a more complicated domain with a non continuously differentiable boundary curve, namely a rectangular region. It will turn out that the boundary integral provides a major part for stabilizing and reconstructing the approximation of the solution in our multiscale procedure.

32

As a first approximation the Earth is a sphere; as a second approximation it may be considered an ellipsoid of revolution. The deviations of the actual Earth's gravity field from the ellipsoidal 'normal' field are so small that they can be understood to be linear. The splitting of the Earth's gravity field into a 'normal' and a remaining small 'disturbing' field considerably simplifies the problem of its determination. Under the assumption of an ellipsoidal Earth model high observational accuracy is achievable only if the deviation (deflection of the vertical) of the physical plumb line, to which measurements refer, from the ellipsoidal normal is not ignored. Hence, the determination of the disturbing potential from known deflections of the vertical is a central problem of physical geodesy. In this paper we propose a new, well-promising method for modelling the disturbing potential locally from the deflections of the vertical. Essential tools are integral formulae on the sphere based on Green's function of the Beltrami operator. The determination of the disturbing potential from deflections of the vertical is formulated as a multiscale procedure involving scale-dependent regularized versions of the surface gradient of the Green function. The modelling process is based on a multiscale framework by use of locally supported surface curl-free vector wavelets.

26

In this paper a known orthonormal system of time- and space-dependent functions, that were derived out of the Cauchy-Navier equation for elastodynamic phenomena, is used to construct reproducing kernel Hilbert spaces. After choosing one of the spaces the corresponding kernel is used to define a function system that serves as a basis for a spline space. We show that under certain conditions there exists a unique interpolating or approximating, respectively, spline in this space with respect to given samples of an unknown function. The name "spline" here refers to its property of minimising a norm among all interpolating functions. Moreover, a convergence theorem and an error estimate relative to the point grid density are derived. As numerical example we investigate the propagation of seismic waves.

30

We present a constructive theory for locally supported approximate identities on the unit ball in \(\mathbb{R}^3\). The uniform convergence of the convolutions of the derived kernels with an arbitrary continuous function \(f\) to \(f\), i.e. the defining property of an approximate identity, is proved. Moreover, an explicit representation for a class of such kernels is given. The original publication is available at www.springerlink.com

29

We introduce a method to construct approximate identities on the 2-sphere which have an optimal localization. This approach can be used to accelerate the calculations of approximations on the 2-sphere essentially with a comparably small increase of the error. The localization measure in the optimization problem includes a weight function which can be chosen under some constraints. For each choice of weight function existence and uniqueness of the optimal kernel are proved as well as the generation of an approximate identity in the bandlimited case. Moreover, the optimally localizing approximate identity for a certain weight function is calculated and numerically tested.

28

We show the numerical applicability of a multiresolution method based on harmonic splines on the 3-dimensional ball which allows the regularized recovery of the harmonic part of the Earth's mass density distribution out of different types of gravity data, e.g. different radial derivatives of the potential, at various positions which need not be located on a common sphere. This approximated harmonic density can be combined with its orthogonal anharmonic complement, e.g. determined out of the splitting function of free oscillations, to an approximation of the whole mass density function. The applicability of the presented tool is demonstrated by several test calculations based on simulated gravity values derived from EGM96. The method yields a multiresolution in the sense that the localization of the constructed spline basis functions can be increased which yields in combination with more data a higher resolution of the resulting spline. Moreover, we show that a locally improved data situation allows a highly resolved recovery in this particular area in combination with a coarse approximation elsewhere which is an essential advantage of this method, e.g. compared to polynomial approximation.

27

This paper presents a method for approximating spherical functions from discrete data of a block-wise grid structure. The essential ingredients of the approach are scaling and wavelet functions within a biorthogonalisation process generated by locally supported zonal kernel functions. In consequence, geophysically and geodetically relevant problems involving rotation-invariant pseudodifferential operators become attackable. A multiresolution analysis is formulated enabling a fast wavelet transform similar to the algorithms known from one-dimensional Euclidean theory.

19

In modern geoscience, understanding the climate depends on the information about the oceans. Covering two thirds of the Earth, oceans play an important role. Oceanic phenomena are, for example, oceanic circulation, water exchanges between atmosphere, land and ocean or temporal changes of the total water volume. All these features require new methods in constructive approximation, since they are regionally bounded and not globally observable. This article deals with methods of handling data with locally supported basis functions, modeling them in a multiscale scheme involving a wavelet approximation and presenting the main results for the dynamic topography and the geostrophic flow, e.g., in the Northern Atlantic. Further, it is demonstrated that compressional rates of the occurring wavelet transforms can be achieved by use of locally supported wavelets.