## Schriften zur Funktionalanalysis und Geomathematik

26

In this paper a known orthonormal system of time- and space-dependent functions, that were derived out of the Cauchy-Navier equation for elastodynamic phenomena, is used to construct reproducing kernel Hilbert spaces. After choosing one of the spaces the corresponding kernel is used to define a function system that serves as a basis for a spline space. We show that under certain conditions there exists a unique interpolating or approximating, respectively, spline in this space with respect to given samples of an unknown function. The name "spline" here refers to its property of minimising a norm among all interpolating functions. Moreover, a convergence theorem and an error estimate relative to the point grid density are derived. As numerical example we investigate the propagation of seismic waves.

41

This paper provides a brief overview of two linear inverse problems concerned with the determination of the Earth’s interior: inverse gravimetry and normal mode tomography. Moreover, a vector spline method is proposed for a combined solution of both problems. This method uses localised basis functions, which are based on reproducing kernels, and is related to approaches which have been successfully applied to the inverse gravimetric problem and the seismic traveltime tomography separately.

28

We show the numerical applicability of a multiresolution method based on harmonic splines on the 3-dimensional ball which allows the regularized recovery of the harmonic part of the Earth's mass density distribution out of different types of gravity data, e.g. different radial derivatives of the potential, at various positions which need not be located on a common sphere. This approximated harmonic density can be combined with its orthogonal anharmonic complement, e.g. determined out of the splitting function of free oscillations, to an approximation of the whole mass density function. The applicability of the presented tool is demonstrated by several test calculations based on simulated gravity values derived from EGM96. The method yields a multiresolution in the sense that the localization of the constructed spline basis functions can be increased which yields in combination with more data a higher resolution of the resulting spline. Moreover, we show that a locally improved data situation allows a highly resolved recovery in this particular area in combination with a coarse approximation elsewhere which is an essential advantage of this method, e.g. compared to polynomial approximation.