## Schriften zur Funktionalanalysis und Geomathematik

### Refine

#### Document Type

- Preprint (34)
- Report (9)
- Working Paper (1)

#### Keywords

- Wavelet (9)
- Mehrskalenanalyse (8)
- Inverses Problem (7)
- Approximation (5)
- Regularisierung (5)
- Gravitationsfeld (4)
- Kugel (4)
- Sphäre (4)
- CHAMP <Satellitenmission> (3)
- Galerkin-Methode (3)
- Gravimetrie (3)
- Kugelflächenfunktion (3)
- Spherical Wavelets (3)
- Spline (3)
- Wavelet-Analyse (3)
- Cauchy-Navier equation (2)
- Cauchy-Navier-Gleichung (2)
- Decomposition and Reconstruction Schemes (2)
- GOCE <Satellitenmission> (2)
- GRACE <Satellitenmission> (2)
- Geodäsie (2)
- Geothermal Flow (2)
- Lokalisation (2)
- Multiresolution Analysis (2)
- Multivariate Approximation (2)
- Navier-Stokes-Gleichung (2)
- Poisson-Gleichung (2)
- Randwertproblem / Schiefe Ableitung (2)
- Sobolev-Raum (2)
- Spline-Approximation (2)
- Theorie schwacher Lösungen (2)
- Up Functions (2)
- approximate identity (2)
- harmonic density (2)
- harmonische Dichte (2)
- reproducing kernel (2)
- reproduzierender Kern (2)
- Abel integral equations (1)
- Abgeschlossenheit (1)
- Ableitung höherer Ordnung (1)
- Alter (1)
- Approximative Identität (1)
- Automatische Spracherkennung (1)
- Behinderter (1)
- Bernstein Kern (1)
- Bernstejn-Polynom (1)
- Biorthogonalisation (1)
- Biot-Savart Operator (1)
- Biot-Savart operator (1)
- Boundary Value Problem (1)
- CHAMP (1)
- Derivatives (1)
- Dirichlet-Problem (1)
- Dynamische Topographie (1)
- EGM96 (1)
- Earth's disturbing potential (1)
- Eigenschwingung (1)
- Elastische Deformation (1)
- Elastizität (1)
- Faltung (1)
- Faltung <Mathematik> (1)
- Fast Pseudo Spectral Algorithm (1)
- Fast Wavelet Transform (1)
- GOCE <satellite mission> (1)
- GRACE (1)
- GRACE <satellite mission> (1)
- Galerkin Approximation (1)
- Gaussian random noise (1)
- Geodätischer Satellit (1)
- Geomagnetic Field Modelling (1)
- Geomagnetismus (1)
- Geomathematik (1)
- Geostrophic flow (1)
- Geostrophisches Gleichgewicht (1)
- Geothermal Systems (1)
- Geothermischer Fluss (1)
- Gleichmäßige Approximation (1)
- Globale nichtlineare Analysis (1)
- Gravitational Field (1)
- Gravitationsmodell (1)
- Green’s function (1)
- Harmonische Dichte (1)
- Harmonische Funktion (1)
- Harmonische Spline-Funktion (1)
- Helmholtz-Decomposition (1)
- Helmholtz-Zerlegung (1)
- Higher Order Differentials as Boundary Data (1)
- Hydrological Gravity Variations (1)
- Hydrologie (1)
- Incompressible Navier-Stokes (1)
- Inkompressibel Navier-Stokes (1)
- Inkorrekt gestelltes Problem (1)
- Inverse problems in Banach spaces (1)
- Kompakter Träger <Mathematik> (1)
- Konstruktive Approximation (1)
- Konvergenz (1)
- Kugelfunktion (1)
- L2-Approximation (1)
- Lavrentiev regularization for equations with monotone operators (1)
- Legendre Wavelets (1)
- Lineare Integralgleichung (1)
- Locally Supported Radial Basis Functions (1)
- Lokalkompakte Kerne (1)
- Massendichte (1)
- Mathematische Modellierung (1)
- Mehrdimensionale Spline-Funktion (1)
- Methode der Fundamentallösungen (1)
- Mie-Darstellung (1)
- Mie-Representation (1)
- Modellierung (1)
- Molodensky Problem (1)
- Molodensky problem (1)
- Multiskalenapproximation (1)
- Multisresolution Analysis (1)
- Neumann Wavelets (1)
- Neumann wavelets (1)
- Neumann-Problem (1)
- Newtonsches Potenzial (1)
- Nichtlineares Galerkinverfahren (1)
- Nonlinear Galerkin Method (1)
- Numerische Mathematik (1)
- Numerisches Verfahren (1)
- Orthonormalbasis (1)
- Polynomapproximation (1)
- Poroelastizität (1)
- Regularization (1)
- Richtungsableitung (1)
- SGG (1)
- SST (1)
- Satellitendaten (1)
- Satellitengeodäsie (1)
- Satellitengradiogravimetrie (1)
- Satellitengradiometrie (1)
- Scattered-Data-Interpolation (1)
- Schnelle Fourier-Transformation (1)
- Seismic Modeling (1)
- Seismische Tomographie (1)
- Seismische Welle (1)
- Semantik (1)
- Signalanalyse (1)
- Skalierungsfunktion (1)
- Sobolev spaces (1)
- Sobolevräume (1)
- Spherical (1)
- Spherical Harmonics (1)
- Spherical Multiresolution Analysis (1)
- Sphärische Wavelets (1)
- Spline-Interpolation (1)
- Spline-Wavelets (1)
- Split Operator (1)
- Split-Operator (1)
- Stochastisches Feld (1)
- Stokes Wavelets (1)
- Stokes wavelets (1)
- Tensor Spherical Harmonics (1)
- Tensorfeld (1)
- Tiefengeothermie (1)
- Time-Space Multiresolution Analysis (1)
- Unschärferelation (1)
- Vector Spherical Harmonics (1)
- Vectorial Wavelets (1)
- Vektor-Wavelets (1)
- Vektorfeld (1)
- Vektorkugelfunktionen (1)
- Vektorwavelets (1)
- Vollständigkeit (1)
- Wavelet Analysis auf regulären Flächen (1)
- Wavelet-Transformation (1)
- Wavelets auf der Kugel und der Sphäre (1)
- Weak Solution Theory (1)
- Weißes Rauschen (1)
- Wellengeschwindigkeit (1)
- Zeitabhängigkeit (1)
- Zeitliche Veränderungen (1)
- Zonal Kernel Functions (1)
- approximative Identität (1)
- ball (1)
- body wave velocity (1)
- constructive approximation (1)
- convergence (1)
- deflections of the vertical (1)
- dynamical topography (1)
- explicit representation (1)
- explizite Darstellung (1)
- fast approximation (1)
- geomathematics (1)
- gravitational field recovery (1)
- harmonic scaling functions and wavelets (1)
- local approximation of sea surface topography (1)
- local multiscale (1)
- local support (1)
- localizing basis (1)
- locally compact (1)
- locally compact kernels (1)
- locally supported (Green's) vector wavelets (1)
- locally supported (Green’s) vector wavelets (1)
- locally supported wavelets (1)
- logical analysis (1)
- logische Analyse (1)
- lokal kompakt (1)
- lokaler Träger (1)
- lokalisierende Basis (1)
- lokalisierende Kerne (1)
- magnetic field (1)
- method of fundamental solutions (1)
- multiscale approximation (1)
- multiscale approximation on regular telluroidal surfaces (1)
- multiscale modeling (1)
- normal mode (1)
- parameter choice (1)
- poroelasticity (1)
- regular surface (1)
- reguläre Fläche (1)
- satellite gravity gradiometry (1)
- schlecht gestellt (1)
- schnelle Approximation (1)
- seismic wave (1)
- severely ill-posed inverse problems (1)
- single layer kernel (1)
- sphere (1)
- spherical decomposition (1)
- spherical splines (1)
- spline (1)
- spline-wavelets (1)
- splitting function (1)
- vector spherical harmonics (1)
- vectorial wavelets (1)
- wavelets (1)
- weak solution theory (1)

11

This work is concerned with a nonlinear Galerkin method for solving the incompressible Navier-Stokes equation on the sphere. It extends the work of Debussche, Marion,Shen, Temam et al. from one-dimensional or toroidal domains to the spherical geometry. In the first part, the method based on type 3 vector spherical harmonics is introduced and convergence is indicated. Further it is shown that the occurring coupling terms involving three vector spherical harmonics can be expressed algebraically in terms of Wigner-3j coefficients. To improve the numerical efficiency and economy we introduce an FFT based pseudo spectral algorithm for computing the Fourier coefficients of the nonlinear advection term. The resulting method scales with O(N^3), if N denotes the maximal spherical harmonic degree. The latter is demonstrated in an extensive numerical example.

3

The Earth's surface is an almost perfect sphere. Deviations from its spherical shape are less than 0,4% of its radius and essentially arise from its rotation. All equipotential surfaces are nearly spherical, too. In consequence, multiscale modelling of geoscientifically relevant data on the sphere involving rotational symmetry of the trial functions used for the approximation plays an important role. In this paper we deal with isotropic kernel functions showing local support and (one-dimensional) polynomial structure (briefly called isotropic finite elements) for reconstructing square--integrable functions on the sphere. Essential tool is the concept of multiresolution analysis by virtue of the spherical up function. The main result is a tree algorithm in terms of (low--order) isotropic finite elements.

22

By means of the limit and jump relations of classical potential theory with respect to the vectorial Helmholtz equation a wavelet approach is established on a regular surface. The multiscale procedure is constructed in such a way that the emerging scalar, vectorial and tensorial potential kernels act as scaling functions. Corresponding wavelets are defined via a canonical refinement equation. A tree algorithm for fast decomposition of a complex-valued vector field given on a regular surface is developed based on numerical integration rules. By virtue of this tree algorithm, an effcient numerical method for the solution of vectorial Fredholm integral equations on regular surfaces is discussed in more detail. The resulting multiscale formulation is used to solve boundary-value problems for the time harmonic Maxwell's equations corresponding to regular surfaces.

27

This paper presents a method for approximating spherical functions from discrete data of a block-wise grid structure. The essential ingredients of the approach are scaling and wavelet functions within a biorthogonalisation process generated by locally supported zonal kernel functions. In consequence, geophysically and geodetically relevant problems involving rotation-invariant pseudodifferential operators become attackable. A multiresolution analysis is formulated enabling a fast wavelet transform similar to the algorithms known from one-dimensional Euclidean theory.

39

The purpose of this paper is the canonical connection of classical global gravity field determination following the concept of Stokes (1849), Bruns (1878), and Neumann (1887) on the one hand and modern locally oriented multiscale computation by use of adaptive locally supported wavelets on the other hand. Essential tools are regularization methods of the Green, Neumann, and Stokes integral representations. The multiscale approximation is guaranteed simply as linear difference scheme by use of Green, Neumann, and Stokes wavelets, respectively. As an application, gravity anomalies caused by plumes are investigated for the Hawaiian and Iceland areas.

23

The following three papers present recent developments in nonlinear Galerkin schemes for solving the spherical Navier-Stokes equation, in wavelet theory based on the 3-dimensional ball, and in multiscale solutions of the Poisson equation inside the ball, that have been presented at the 76th GAMM Annual Meeting in Luxemburg. Part A: A Nonlinear Galerkin Scheme Involving Vectorial and Tensorial Spherical Wavelets for Solving the Incompressible Navier-Stokes Equation on the Sphere The spherical Navier-Stokes equation plays a fundamental role in meteorology by modelling meso-scale (stratified) atmospherical flows. This article introduces a wavelet based nonlinear Galerkin method applied to the Navier-Stokes equation on the rotating sphere. In detail, this scheme is implemented by using divergence free vectorial spherical wavelets, and its convergence is proven. To improve numerical efficiency an extension of the spherical panel clustering algorithm to vectorial and tensorial kernels is constructed. This method enables the rapid computation of the wavelet coefficients of the nonlinear advection term. Thereby, we also indicate error estimates. Finally, extensive numerical simulations for the nonlinear interaction of three vortices are presented. Part B: Methods of Resolution for the Poisson Equation on the 3D Ball Within the article at hand, we investigate the Poisson equation solved by an integral operator, originating from an ansatz by Greens functions. This connection between mass distributions and the gravitational force is essential to investigate, especially inside the Earth, where structures and phenomena are not sufficiently known and plumbable. Since the operator stated above does not solve the equation for all square-integrable functions, the solution space will be decomposed by a multiscale analysis in terms of scaling functions. Classical Euclidean wavelet theory appears not to be the appropriate choice. Ansatz functions are chosen to be reflecting the rotational invariance of the ball. In these terms, the operator itself is finally decomposed and replaced by versions more manageable, revealing structural information about itself. Part C: Wavelets on the 3–dimensional Ball In this article wavelets on a ball in R^3 are introduced. Corresponding properties like an approximate identity and decomposition/reconstruction (scale step property) are proved. The advantage of this approach compared to a classical Fourier analysis in orthogonal polynomials is a better localization of the used ansatz functions.

10

The following two papers present recent developments in multiscale ocean circulation modeling and multiscale gravitational field modeling that have been presented at the 2nd International GOCE User Workshop 2004 in Frascati. Part A - Multiscale Modeling of Ocean Circulation In this paper the applicability of multiscale methods to oceanography is demonstrated. More precisely, we use convolutions with certain locally supported kernels to approximate the dynamic topography and the geostrophic flow. As data sets the French CLS01 data are used for the mean sea surface topography and are compared to the EGM96 geoid. Since those two data sets have very different levels of spatial resolutions the necessity of an interpolating or approximating tool is evident. Compared to the standard spherical harmonics approach, the strongly space localizing kernels improve the possibilities of local data analysis here. Part B - Multiscale Modeling from EIGEN-1S, EIGEN-2, EIGEN-GRACE01S, GGM01, UCPH2002_0.5, EGM96 Spherical wavelets have been developed by the Geomathematics Group Kaiserslautern for several years and have been successfully applied to georelevant problems. Wavelets can be considered as consecutive band-pass filters and allow local approximations. The wavelet transform can also be applied to spherical harmonic models of the Earth's gravitational field like the most up-to-date EIGEN-1S, EIGEN-2, EIGEN-GRACE01S, GGM01, UCPH2002_0.5, and the well-known EGM96. Thereby, wavelet coefficients arise. In this paper it is the aim of the Geomathematics Group to make these data available to other interested groups. These wavelet coefficients allow not only the reconstruction of the wavelet approximations of the gravitational potential but also of the geoid, of the gravity anomalies and other important functionals of the gravitational field. Different types of wavelets are considered: bandlimited wavelets (here: Shannon and Cubic Polynomial (CuP)) as well as non-bandlimited ones (in our case: Abel-Poisson). For these types wavelet coefficients are computed and wavelet variances are given. The data format of the wavelet coefficients is also included.

6

Die Grundgleichungen der Physikalischen Geodäsie (in der klassischen Formulierung) werden einer Multiskalenformulierung mittels (sphärisch harmonischer) Wavelets unterzogen. Die Energieverteilung des Störpotentials wird in Auflösung nach Skala und Ort durch Verwendung von Waveletvarianzen beschrieben. Schließlich werden zur Modellierung der zeitlichen Variationen des Schwerefeldes zeit- und ortsgebundene Energiespektren zur Detektion lokaler sowie periodischer/saisonaler Strukturen eingeführt.

24

We will give explicit differentiation and integration rules for homogeneous harmonic polynomial polynomials and spherical harmonics in IR^3 with respect to the following differential operators: partial_1, partial_2, partial_3, x_3 partial_2 - x_2 partial_3, x_3 partial_1 - x_1 partial_3, x_2 partial_1 - x_1 partial_2 and x_1 partial_1 + x_2 partial_2 + x_3 partial_3. A numerical application to the problem of determining the geopotential field will be shown.

29

We introduce a method to construct approximate identities on the 2-sphere which have an optimal localization. This approach can be used to accelerate the calculations of approximations on the 2-sphere essentially with a comparably small increase of the error. The localization measure in the optimization problem includes a weight function which can be chosen under some constraints. For each choice of weight function existence and uniqueness of the optimal kernel are proved as well as the generation of an approximate identity in the bandlimited case. Moreover, the optimally localizing approximate identity for a certain weight function is calculated and numerically tested.

16

We introduce splines for the approximation of harmonic functions on a 3-dimensional ball. Those splines are combined with a multiresolution concept. More precisely, at each step of improving the approximation we add more data and, at the same time, reduce the hat-width of the used spline basis functions. Finally, a convergence theorem is proved. One possible application, that is discussed in detail, is the reconstruction of the Earth´s density distribution from gravitational data obtained at a satellite orbit. This is an exponentially ill-posed problem where only the harmonic part of the density can be recovered since its orthogonal complement has the potential 0. Whereas classical approaches use a truncated singular value decomposition (TSVD) with the well-known disadvantages like the non-localizing character of the used spherical harmonics and the bandlimitedness of the solution, modern regularization techniques use wavelets allowing a localized reconstruction via convolutions with kernels that are only essentially large in the region of interest. The essential remaining drawback of a TSVD and the wavelet approaches is that the integrals (i.e. the inner product in case of a TSVD and the convolution in case of wavelets) are calculated on a spherical orbit, which is not given in reality. Thus, simplifying modelling assumptions, that certainly include a modelling error, have to be made. The splines introduced here have the important advantage, that the given data need not be located on a sphere but may be (almost) arbitrarily distributed in the outer space of the Earth. This includes, in particular, the possibility to mix data from different satellite missions (different orbits, different derivatives of the gravitational potential) in the calculation of the Earth´s density distribution. Moreover, the approximating splines can be calculated at varying resolution scales, where the differences for increasing the resolution can be computed with the introduced spline-wavelet technique.

38

Gegenstand dieser Arbeit ist die kanonische Verbindung klassischer globaler Schwerefeldmodellierung in der Konzeption von Stokes (1849) und Neumann (1887) und moderner lokaler Multiskalenberechnung mittels lokalkompakter adaptiver Wavelets. Besonderes Anliegen ist die "Zoom-in"-Ermittlung von Geoidhöhen aus lokal gegebenen Schwereanomalien bzw. Schwerestörungen.

46

In this article we combine the modern theory of Sobolev spaces with the classical theory of limit formulae and jump relations of potential theory. Also other authors proved the convergence in Lebesgue spaces for integrable functions. The achievement of this paper is the L2 convergence for the weak derivatives of higher orders. Also the layer functions F are elements of Sobolev spaces and a two dimensional suitable smooth submanifold in R3, called regular Cm-surface. We are considering the potential of the single layer, the potential of the double layer as well as their first order normal derivatives. Main tool is the convergence in Cm-norm which is proved with help of some results taken from [14]. Additionally, we need a result about the limit formulae in L2-norm, which can be found in [16], and a reduction result which we took from [19]. Moreover we prove the convergence in the Hölder spaces Cm,alpha. Finally, we give an application of the limit formulae and jump relations to Geomathematics. We generalize a density results, see e.g. [11], from L2 to Hm,2. For it we prove the limit formula for U1 in (Hm,2)' also.

31

This paper deals with the problem of determining the sea surface topography from geostrophic flow of ocean currents on local domains of the spherical Earth. In mathematical context the problem amounts to the solution of a spherical differential equation relating the surface curl gradient of a scalar field (sea surface topography) to a surface divergence-free vector field(geostrophic ocean flow). At first, a continuous solution theory is presented in the framework of an integral formula involving Green’s function of the spherical Beltrami operator. Different criteria derived from spherical vector analysis are given to investigate uniqueness. Second, for practical applications Green’s function is replaced by a regularized counterpart. The solution is obtained by a convolution of the flow field with a scaled version of the regularized Green function. Calculating locally without boundary correction would lead to errors near the boundary. To avoid these Gibbs phenomenona we additionally consider the boundary integral of the corresponding region on the sphere which occurs in the integral formula of the solution. For reasons of simplicity we discuss a spherical cap first, that means we consider a continuously differentiable (regular) boundary curve. In a second step we concentrate on a more complicated domain with a non continuously differentiable boundary curve, namely a rectangular region. It will turn out that the boundary integral provides a major part for stabilizing and reconstructing the approximation of the solution in our multiscale procedure.

19

In modern geoscience, understanding the climate depends on the information about the oceans. Covering two thirds of the Earth, oceans play an important role. Oceanic phenomena are, for example, oceanic circulation, water exchanges between atmosphere, land and ocean or temporal changes of the total water volume. All these features require new methods in constructive approximation, since they are regionally bounded and not globally observable. This article deals with methods of handling data with locally supported basis functions, modeling them in a multiscale scheme involving a wavelet approximation and presenting the main results for the dynamic topography and the geostrophic flow, e.g., in the Northern Atlantic. Further, it is demonstrated that compressional rates of the occurring wavelet transforms can be achieved by use of locally supported wavelets.

30

We present a constructive theory for locally supported approximate identities on the unit ball in \(\mathbb{R}^3\). The uniform convergence of the convolutions of the derived kernels with an arbitrary continuous function \(f\) to \(f\), i.e. the defining property of an approximate identity, is proved. Moreover, an explicit representation for a class of such kernels is given. The original publication is available at www.springerlink.com

48

We provide a space domain oriented separation of magnetic fields into parts generated by sources in the exterior and sources in the interior of a given sphere. The separation itself is well-known in geomagnetic modeling, usually in terms of a spherical harmonic analysis or a wavelet analysis that is spherical harmonic based. However, it can also be regarded as a modification of the Helmholtz decomposition for which we derive integral representations with explicitly known convolution kernels. Regularizing these singular kernels allows a multiscale representation of the magnetic field with locally supported wavelets. This representation is applied to a set of CHAMP data for crustal field modeling.

50

This report gives an insight into basics of stress field simulations for geothermal reservoirs.
The quasistatic equations of poroelasticity are deduced from constitutive equations, balance
of mass and balance of momentum. Existence and uniqueness of a weak solution is shown.
In order of to find an approximate solution numerically, usage of the so–called method of
fundamental solutions is a promising way. The idea of this method as well as a sketch of
how convergence may be proven are given.

49

Insbesondere bei der industriellen Nutzung tiefer geothermischer Systeme gibt es Risiken, die im Hinblick auf eine zukunftsträchtige Rolle der Ressource "Geothermie" innerhalb der Energiebranche eingeschätzt und minimiert werden müssen. Zur Förderung und Unterstützung dieses Prozesses kann die Mathematik einen entscheidenden Beitrag leisten. Um dies voranzutreiben haben wir zur Charakterisierung tiefer geothermischer Systeme ein Säulenmodell entwickelt, das die Bereiche Exploration, Bau und Produktion näher beleuchtet. Im Speziellen beinhalten die Säulen: Seismische Erkundung, Gravimetrie/Geomagnetik, Transportprozesse, Spannungsfeld.

47

Due to the increasing demand of renewable energy production facilities, modeling geothermal reservoirs is a central issue in today's engineering practice. After over 40 years of study, many models have been proposed and applied to hundreds of sites worldwide. Nevertheless, with increasing computational capabilities new efficient methods are becoming available. The aim of this paper is to present recent progress on seismic processing as well as fluid and thermal flow simulations for porous and fractured subsurface systems. The commonly used methods in industrial energy exploration and production such as forward modeling, seismic migration, and inversion methods together with continuum and discrete flow models for reservoir monitoring and management are reviewed. Furthermore, for two specific features numerical examples are presented. Finally, future fields of studies are described.

2

A new class of locally supported radial basis functions on the (unit) sphere is introduced by forming an infinite number of convolutions of ''isotropic finite elements''. The resulting up functions show useful properties: They are locally supported and are infinitely often differentiable. The main properties of these kernels are studied in detail. In particular, the development of a multiresolution analysis within the reference space of square--integrable functions over the sphere is given. Altogether, the paper presents a mathematically significant and numerically efficient introduction to multiscale approximation by locally supported radial basis functions on the sphere.

4

The following three papers present recent developments in multiscale gravitational field modeling by the use of CHAMP or CHAMP-related data. Part A - The Model SWITCH-03: Observed orbit perturbations of the near-Earth orbiting satellite CHAMP are analyzed to recover the long-wavelength features of the Earth's gravitational potential. More precisely, by tracking the low-flying satellite CHAMP by the high-flying satellites of the Global Positioning System (GPS) a kinematic orbit of CHAMP is obtainable from GPS tracking observations, i.e. the ephemeris in cartesian coordinates in an Earth-fixed coordinate frame (WGS84) becomes available. In this study we are concerned with two tasks: First we present new methods for preprocessing, modelling and analyzing the emerging tracking data. Then, in a first step we demonstrate the strength of our approach by applying it to simulated CHAMP orbit data. In a second step we present results obtained by operating on a data set derived from real CHAMP data. The modelling is mainly based on a connection between non-bandlimited spherical splines and least square adjustment techniques to take into account the non-sphericity of the trajectory. Furthermore, harmonic regularization wavelets for solving the underlying Satellite-to-Satellite Tracking (SST) problem are used within the framework of multiscale recovery of the Earth's gravitational potential leading to SWITCH-03 (Spline and Wavelet Inverse Tikhonov regularized CHamp data). Further it is shown how regularization parameters can be adapted adequately to a specific region improving a globally resolved model. Finally we give a comparison of the developed model to the EGM96 model, the model UCPH2002_02_0.5 from the University of Copenhagen and the GFZ models EIGEN-1s and EIGEN-2. Part B - Multiscale Solutions from CHAMP: CHAMP orbits and accelerometer data are used to recover the long- to medium- wavelength features of the Earth's gravitational potential. In this study we are concerned with analyzing preprocessed data in a framework of multiscale recovery of the Earth's gravitational potential, allowing both global and regional solutions. The energy conservation approach has been used to convert orbits and accelerometer data into in-situ potential. Our modelling is spacewise, based on (1) non-bandlimited least square adjustment splines to take into account the true (non-spherical) shape of the trajectory (2) harmonic regularization wavelets for solving the underlying inverse problem of downward continuation. Furthermore we can show that by adapting regularization parameters to specific regions local solutions can improve considerably on global ones. We apply this concept to kinematic CHAMP orbits, and, for test purposes, to dynamic orbits. Finally we compare our recovered model to the EGM96 model, and the GFZ models EIGEN-2 and EIGEN-GRACE01s. Part C - Multiscale Modeling from EIGEN-1S, EIGEN-2, EIGEN-GRACE01S, UCPH2002_0.5, EGM96: Spherical wavelets have been developed by the Geomathematics Group Kaiserslautern for several years and have been successfully applied to georelevant problems. Wavelets can be considered as consecutive band-pass filters and allow local approximations. The wavelet transform can also be applied to spherical harmonic models of the Earth's gravitational field like the most up-to-date EIGEN-1S, EIGEN-2, EIGEN-GRACE01S, UCPH2002_0.5, and the well-known EGM96. Thereby, wavelet coefficients arise and these shall be made available to other interested groups. These wavelet coefficients allow the reconstruction of the wavelet approximations. Different types of wavelets are considered: bandlimited wavelets (here: Shannon and Cubic Polynomial (CP)) as well as non-bandlimited ones (in our case: Abel-Poisson). For these types wavelet coefficients are computed and wavelet variances are given. The data format of the wavelet coefficients is also included.

14

Based on the well-known results of classical potential theory, viz. the limit and jump relations for layer integrals, a numerically viable and e±cient multiscale method of approximating the disturbing potential from gravity anomalies is established on regular surfaces, i.e., on telluroids of ellipsoidal or even more structured geometric shape. The essential idea is to use scale dependent regularizations of the layer potentials occurring in the integral formulation of the linearized Molodensky problem to introduce scaling functions and wavelets on the telluroid. As an application of our multiscale approach some numerical examples are presented on an ellipsoidal telluroid.

28

We show the numerical applicability of a multiresolution method based on harmonic splines on the 3-dimensional ball which allows the regularized recovery of the harmonic part of the Earth's mass density distribution out of different types of gravity data, e.g. different radial derivatives of the potential, at various positions which need not be located on a common sphere. This approximated harmonic density can be combined with its orthogonal anharmonic complement, e.g. determined out of the splitting function of free oscillations, to an approximation of the whole mass density function. The applicability of the presented tool is demonstrated by several test calculations based on simulated gravity values derived from EGM96. The method yields a multiresolution in the sense that the localization of the constructed spline basis functions can be increased which yields in combination with more data a higher resolution of the resulting spline. Moreover, we show that a locally improved data situation allows a highly resolved recovery in this particular area in combination with a coarse approximation elsewhere which is an essential advantage of this method, e.g. compared to polynomial approximation.

41

This paper provides a brief overview of two linear inverse problems concerned with the determination of the Earth’s interior: inverse gravimetry and normal mode tomography. Moreover, a vector spline method is proposed for a combined solution of both problems. This method uses localised basis functions, which are based on reproducing kernels, and is related to approaches which have been successfully applied to the inverse gravimetric problem and the seismic traveltime tomography separately.

1

We study a possiblity to use the structure of the regularization error for a posteriori choice of the regularization parameter. As a result, a rather general form of a selection criterion is proposed, and its relation to the heuristical quasi-optimality principle of Tikhonov and Glasko (1964), and to an adaptation scheme proposed in a statistical context by Lepskii (1990), is discussed. The advantages of the proposed criterion are illustrated by using such examples as self-regularization of the trapezoidal rule for noisy Abel-type integral equations, Lavrentiev regularization for non-linear ill-posed problems and an inverse problem of the two-dimensional profile reconstruction.

37

32

As a first approximation the Earth is a sphere; as a second approximation it may be considered an ellipsoid of revolution. The deviations of the actual Earth's gravity field from the ellipsoidal 'normal' field are so small that they can be understood to be linear. The splitting of the Earth's gravity field into a 'normal' and a remaining small 'disturbing' field considerably simplifies the problem of its determination. Under the assumption of an ellipsoidal Earth model high observational accuracy is achievable only if the deviation (deflection of the vertical) of the physical plumb line, to which measurements refer, from the ellipsoidal normal is not ignored. Hence, the determination of the disturbing potential from known deflections of the vertical is a central problem of physical geodesy. In this paper we propose a new, well-promising method for modelling the disturbing potential locally from the deflections of the vertical. Essential tools are integral formulae on the sphere based on Green's function of the Beltrami operator. The determination of the disturbing potential from deflections of the vertical is formulated as a multiscale procedure involving scale-dependent regularized versions of the surface gradient of the Green function. The modelling process is based on a multiscale framework by use of locally supported surface curl-free vector wavelets.

25

We analyze the regular oblique boundary problem for the Poisson equation on a C^1-domain with stochastic inhomogeneities. At first we investigate the deterministic problem. Since our assumptions on the inhomogeneities and coefficients are very weak, already in order to formulate the problem we have to work out properties of functions from Sobolev spaces on submanifolds. An further analysis of Sobolev spaces on submanifolds together with the Lax-Milgram lemma enables us to prove an existence and uniqueness result for weak solution to the oblique boundary problem under very weak assumptions on coefficients and inhomogeneities. Then we define the spaces of stochastic functions with help of the tensor product. These spaces enable us to extend the deterministic formulation to the stochastic setting. Under as weak assumptions as in the deterministic case we are able to prove the existence and uniqueness of a stochastic weak solution to the regular oblique boundary problem for the Poisson equation. Our studies are motivated by problems from geodesy and through concrete examples we show the applicability of our results. Finally a Ritz-Galerkin approximation is provided. This can be used to compute the stochastic weak solution numerically.

13

The mathematical formulation of many physical problems results in the task of inverting a compact operator. The only known sensible solution technique is regularization which poses a severe problem in itself. Classically one dealt with deterministic noise models and required both the knowledge of smoothness of the solution function and the overall error behavior. We will show that we can guarantee an asymptotically optimal regularization for a physically motivated noise model under no assumptions for the smoothness and rather weak assumptions on the noise behavior which can mostly obtained out of two input data sets. An application to the determination of the gravitational field out of satellite data will be shown.

8

The inverse problem of recovering the Earth's density distribution from data of the first or second derivative of the gravitational potential at satellite orbit height is discussed for a ball-shaped Earth. This problem is exponentially ill-posed. In this paper a multiscale regularization technique using scaling functions and wavelets constructed for the corresponding integro-differential equations is introduced and its numerical applications are discussed. In the numerical part the second radial derivative of the gravitational potential at 200 km orbitheight is calculated on a point grid out of the NASA/GSFC/NIMA Earth Geopotential Model (EGM96). Those simulated derived data out of SGG (satellite gravity gradiometry) satellite measurements are taken for convolutions with the introduced scaling functions yielding a multiresolution analysis of harmonic density variations in the Earth's crust. Moreover, the noise sensitivity of the regularization technique is analyzed numerically.

40

We present results and views about a project in assisted living. The scenario is a room in which an elderly and/or disabled person lives who is not able to perform certain actions due to restricted mobility. We enable the person to express commands verbally that will then be executed automatically. There are several severe problems involved that complicate the situation. The person may utter the command in a rather unexpected way, the person makes an error or the action cannot be performed due to several reasons. In our approach we present an architecture with three components: The recognition component that contains novel features in the signal processing, the analysis component that logically analyzes the command, and the execution component that performs the action automatically. All three components communicate with each other.

44

Using a stereographical projection to the plane we construct an O(N log(N)) algorithm to approximate scattered data in N points by orthogonal, compactly supported wavelets on the surface of a 2-sphere or a local subset of it. In fact, the sphere is not treated all at once, but is split into subdomains whose results are combined afterwards. After choosing the center of the area of interest the scattered data points are mapped from the sphere to the tangential plane through that point. By combining a k-nearest neighbor search algorithm and the two dimensional fast wavelet transform a fast approximation of the data is computed and mapped back to the sphere. The algorithm is tested with nearly 1 million data points and yields an approximation with 0.35% relative errors in roughly 2 minutes on a standard computer using our MATLAB implementation. The method is very flexible and allows the application of the full range of two dimensional wavelets.

33

In this paper we construct spline functions based on a reproducing kernel Hilbert space to interpolate/approximate the velocity field of earthquake waves inside the Earth based on traveltime data for an inhomogeneous grid of sources (hypocenters) and receivers (seismic stations). Theoretical aspects including error estimates and convergence results as well as numerical results are demonstrated.

17

In the field of gravity determination a special kind of boundary value problem respectively ill-posed satellite problem occurs; the data and hence side condition of our PDE are oblique second order derivatives of the gravitational potential. In mathematical terms this means that our gravitational potential \(v\) fulfills \(\Delta v = 0\) in the exterior space of the Earth and \(\mathscr D v = f\) on the discrete data location which is on the Earth's surface for terrestrial measurements and on a satellite track in the exterior for spaceborne measurement campaigns. \(\mathscr D\) is a first order derivative for methods like geometric astronomic levelling and satellite-to-satellite tracking (e.g. CHAMP); it is a second order derivative for other methods like terrestrial gradiometry and satellite gravity gradiometry (e.g. GOCE). Classically one can handle first order side conditions which are not tangential to the surface and second derivatives pointing in the radial direction employing integral and pseudo differential equation methods. We will present a different approach: We classify all first and purely second order operators \(\mathscr D\) which fulfill \(\Delta \mathscr D v = 0\) if \(\Delta v = 0\). This allows us to solve the problem with oblique side conditions as if we had ordinary i.e. non-derived side conditions. The only additional work which has to be done is an inversion of \(\mathscr D\), i.e. integration.

43

In this article we prove existence and uniqueness results for solutions to the outer oblique boundary problem for the Poisson equation under very weak assumptions on boundary, coefficients and inhomogeneities. Main tools are the Kelvin transformation and the solution operator for the regular inner problem, provided in [1]. Moreover we prove regularisation results for the weak solutions of both, the inner and the outer problem. We investigate the non-admissible direction for the oblique vector field, state results with stochastic inhomogeneities and provide a Ritz-Galerkinm approximation. The results are applicable to problems from Geomathematics, see e.g. [2] and [3].

20

In this work we introduce a new bandlimited spherical wavelet: The Bernstein wavelet. It possesses a couple of interesting properties. To be specific, we are able to construct bandlimited wavelets free of oscillations. The scaling function of this wavelet is investigated with regard to the spherical uncertainty principle, i.e., its localization in the space domain as well as in the momentum domain is calculated and compared to the well-known Shannon scaling function. Surprisingly, they possess the same localization in space although one is highly oscillating whereas the other one shows no oscillatory behavior. Moreover, the Bernstein scaling function turns out to be the first bandlimited scaling function known to the literature whose uncertainty product tends to the minimal value 1.

26

In this paper a known orthonormal system of time- and space-dependent functions, that were derived out of the Cauchy-Navier equation for elastodynamic phenomena, is used to construct reproducing kernel Hilbert spaces. After choosing one of the spaces the corresponding kernel is used to define a function system that serves as a basis for a spline space. We show that under certain conditions there exists a unique interpolating or approximating, respectively, spline in this space with respect to given samples of an unknown function. The name "spline" here refers to its property of minimising a norm among all interpolating functions. Moreover, a convergence theorem and an error estimate relative to the point grid density are derived. As numerical example we investigate the propagation of seismic waves.

36

This paper presents a wavelet analysis of temporal and spatial variations of the Earth's gravitational potential based on tensor product wavelets. The time--space wavelet concept is realized by combining Legendre wavelets for the time domain and spherical wavelets for the space domain. In consequence, a multiresolution analysis for both, temporal and spatial resolution, is formulated within a unified concept. The method is then numerically realized by using first synthetically generated data and, finally, several real data sets.

9

In this paper we introduce a multiscale technique for the analysis of deformation phenomena of the Earth. Classically, the basis functions under use are globally defined and show polynomial character. In consequence, only a global analysis of deformations is possible such that, for example, the water load of an artificial reservoir is hardly to model in that way. Up till now, the alternative to realize a local analysis can only be established by assuming the investigated region to be flat. In what follows we propose a local analysis based on tools (Navier scaling functions and wavelets) taking the (spherical) surface of the Earth into account. Our approach, in particular, enables us to perform a zooming-in procedure. In fact, the concept of Navier wavelets is formulated in such a way that subregions with larger or smaller data density can accordingly be modelled with a higher or lower resolution of the model, respectively.

21

This work is dedicated to the wavelet modelling of regional and temporal variations of the Earth's gravitational potential observed by GRACE. In the first part, all required mathematical tools and methods involving spherical wavelets are introduced. Then we apply our method to monthly GRACE gravity fields. A strong seasonal signal can be identified, which is restricted to areas, where large-scale redistributions of continental water mass are expected. This assumption is analyzed and verified by comparing the time series of regionally obtained wavelet coefficients of the gravitational signal originated from hydrology models and the gravitational potential observed by GRACE. The results are in good agreement to previous studies and illustrate that wavelets are an appropriate tool to investigate regional time-variable effects in the gravitational field.

5

The article is concerned with the modelling of ionospheric current systems from induced magnetic fields measured by satellites in a multiscale framework. Scaling functions and wavelets are used to realize a multiscale analysis of the function spaces under consideration and to establish a multiscale regularization procedure for the inversion of the considered vectorial operator equation. Based on the knowledge of the singular system a regularization technique in terms of certain product kernels and corresponding convolutions can be formed. In order to reconstruct ionospheric current systems from satellite magnetic field data, an inversion of the Biot-Savart's law in terms of multiscale regularization is derived. The corresponding operator is formulated and the singular values are calculated. The method is tested on real magnetic field data of the satellite CHAMP and the proposed satellite mission SWARM.

7

A wavelet technique, the wavelet-Mie-representation, is introduced for the analysis and modelling of the Earth's magnetic field and corresponding electric current distributions from geomagnetic data obtained within the ionosphere. The considerations are essentially based on two well-known geomathematical keystones, (i) the Helmholtz-decomposition of spherical vector fields and (ii) the Mie-representation of solenoidal vector fields in terms of poloidal and toroidal parts. The wavelet-Mie-representation is shown to provide an adequate tool for geomagnetic modelling in the case of ionospheric magnetic contributions and currents which exhibit spatially localized features. An important example are ionospheric currents flowing radially onto or away from the Earth. To demonstrate the functionality of the approach, such radial currents are calculated from vectorial data of the MAGSAT and CHAMP satellite missions.

45

Gegenstand dieser Arbeit ist die Entwicklung eines Wärmetransportmodells für tiefe geothermische (hydrothermale) Reservoire. Existenz- und Eindeutigkeitsaussagen bezüglich einer schwachen Lösung des vorgestellten Modells werden getätigt. Weiterhin wird ein Verfahren zur Approximation dieser Lösung basierend auf einem linearen Galerkin-Schema dargelegt, wobei sowohl die Konvergenz nachgewiesen als auch eine Konvergenzrate erarbeitet werden.