## Schriften zur Funktionalanalysis und Geomathematik

### Refine

#### Year of publication

- 2005 (9) (remove)

#### Document Type

- Preprint (9)

#### Language

- English (9)

#### Has Fulltext

- yes (9)

#### Is part of the Bibliography

- no (9)

#### Keywords

- Mehrskalenanalyse (3)
- Wavelet (3)
- Approximation (2)
- Galerkin-Methode (2)
- Poisson-Gleichung (2)
- Randwertproblem / Schiefe Ableitung (2)
- Sobolev-Raum (2)
- Ableitung höherer Ordnung (1)
- Bernstejn-Polynom (1)
- Boundary Value Problem (1)

#### Faculty / Organisational entity

16

We introduce splines for the approximation of harmonic functions on a 3-dimensional ball. Those splines are combined with a multiresolution concept. More precisely, at each step of improving the approximation we add more data and, at the same time, reduce the hat-width of the used spline basis functions. Finally, a convergence theorem is proved. One possible application, that is discussed in detail, is the reconstruction of the Earth´s density distribution from gravitational data obtained at a satellite orbit. This is an exponentially ill-posed problem where only the harmonic part of the density can be recovered since its orthogonal complement has the potential 0. Whereas classical approaches use a truncated singular value decomposition (TSVD) with the well-known disadvantages like the non-localizing character of the used spherical harmonics and the bandlimitedness of the solution, modern regularization techniques use wavelets allowing a localized reconstruction via convolutions with kernels that are only essentially large in the region of interest. The essential remaining drawback of a TSVD and the wavelet approaches is that the integrals (i.e. the inner product in case of a TSVD and the convolution in case of wavelets) are calculated on a spherical orbit, which is not given in reality. Thus, simplifying modelling assumptions, that certainly include a modelling error, have to be made. The splines introduced here have the important advantage, that the given data need not be located on a sphere but may be (almost) arbitrarily distributed in the outer space of the Earth. This includes, in particular, the possibility to mix data from different satellite missions (different orbits, different derivatives of the gravitational potential) in the calculation of the Earth´s density distribution. Moreover, the approximating splines can be calculated at varying resolution scales, where the differences for increasing the resolution can be computed with the introduced spline-wavelet technique.

17

In the field of gravity determination a special kind of boundary value problem respectively ill-posed satellite problem occurs; the data and hence side condition of our PDE are oblique second order derivatives of the gravitational potential. In mathematical terms this means that our gravitational potential \(v\) fulfills \(\Delta v = 0\) in the exterior space of the Earth and \(\mathscr D v = f\) on the discrete data location which is on the Earth's surface for terrestrial measurements and on a satellite track in the exterior for spaceborne measurement campaigns. \(\mathscr D\) is a first order derivative for methods like geometric astronomic levelling and satellite-to-satellite tracking (e.g. CHAMP); it is a second order derivative for other methods like terrestrial gradiometry and satellite gravity gradiometry (e.g. GOCE). Classically one can handle first order side conditions which are not tangential to the surface and second derivatives pointing in the radial direction employing integral and pseudo differential equation methods. We will present a different approach: We classify all first and purely second order operators \(\mathscr D\) which fulfill \(\Delta \mathscr D v = 0\) if \(\Delta v = 0\). This allows us to solve the problem with oblique side conditions as if we had ordinary i.e. non-derived side conditions. The only additional work which has to be done is an inversion of \(\mathscr D\), i.e. integration.

19

In modern geoscience, understanding the climate depends on the information about the oceans. Covering two thirds of the Earth, oceans play an important role. Oceanic phenomena are, for example, oceanic circulation, water exchanges between atmosphere, land and ocean or temporal changes of the total water volume. All these features require new methods in constructive approximation, since they are regionally bounded and not globally observable. This article deals with methods of handling data with locally supported basis functions, modeling them in a multiscale scheme involving a wavelet approximation and presenting the main results for the dynamic topography and the geostrophic flow, e.g., in the Northern Atlantic. Further, it is demonstrated that compressional rates of the occurring wavelet transforms can be achieved by use of locally supported wavelets.

20

In this work we introduce a new bandlimited spherical wavelet: The Bernstein wavelet. It possesses a couple of interesting properties. To be specific, we are able to construct bandlimited wavelets free of oscillations. The scaling function of this wavelet is investigated with regard to the spherical uncertainty principle, i.e., its localization in the space domain as well as in the momentum domain is calculated and compared to the well-known Shannon scaling function. Surprisingly, they possess the same localization in space although one is highly oscillating whereas the other one shows no oscillatory behavior. Moreover, the Bernstein scaling function turns out to be the first bandlimited scaling function known to the literature whose uncertainty product tends to the minimal value 1.

21

This work is dedicated to the wavelet modelling of regional and temporal variations of the Earth's gravitational potential observed by GRACE. In the first part, all required mathematical tools and methods involving spherical wavelets are introduced. Then we apply our method to monthly GRACE gravity fields. A strong seasonal signal can be identified, which is restricted to areas, where large-scale redistributions of continental water mass are expected. This assumption is analyzed and verified by comparing the time series of regionally obtained wavelet coefficients of the gravitational signal originated from hydrology models and the gravitational potential observed by GRACE. The results are in good agreement to previous studies and illustrate that wavelets are an appropriate tool to investigate regional time-variable effects in the gravitational field.

22

By means of the limit and jump relations of classical potential theory with respect to the vectorial Helmholtz equation a wavelet approach is established on a regular surface. The multiscale procedure is constructed in such a way that the emerging scalar, vectorial and tensorial potential kernels act as scaling functions. Corresponding wavelets are defined via a canonical refinement equation. A tree algorithm for fast decomposition of a complex-valued vector field given on a regular surface is developed based on numerical integration rules. By virtue of this tree algorithm, an effcient numerical method for the solution of vectorial Fredholm integral equations on regular surfaces is discussed in more detail. The resulting multiscale formulation is used to solve boundary-value problems for the time harmonic Maxwell's equations corresponding to regular surfaces.

23

The following three papers present recent developments in nonlinear Galerkin schemes for solving the spherical Navier-Stokes equation, in wavelet theory based on the 3-dimensional ball, and in multiscale solutions of the Poisson equation inside the ball, that have been presented at the 76th GAMM Annual Meeting in Luxemburg. Part A: A Nonlinear Galerkin Scheme Involving Vectorial and Tensorial Spherical Wavelets for Solving the Incompressible Navier-Stokes Equation on the Sphere The spherical Navier-Stokes equation plays a fundamental role in meteorology by modelling meso-scale (stratified) atmospherical flows. This article introduces a wavelet based nonlinear Galerkin method applied to the Navier-Stokes equation on the rotating sphere. In detail, this scheme is implemented by using divergence free vectorial spherical wavelets, and its convergence is proven. To improve numerical efficiency an extension of the spherical panel clustering algorithm to vectorial and tensorial kernels is constructed. This method enables the rapid computation of the wavelet coefficients of the nonlinear advection term. Thereby, we also indicate error estimates. Finally, extensive numerical simulations for the nonlinear interaction of three vortices are presented. Part B: Methods of Resolution for the Poisson Equation on the 3D Ball Within the article at hand, we investigate the Poisson equation solved by an integral operator, originating from an ansatz by Greens functions. This connection between mass distributions and the gravitational force is essential to investigate, especially inside the Earth, where structures and phenomena are not sufficiently known and plumbable. Since the operator stated above does not solve the equation for all square-integrable functions, the solution space will be decomposed by a multiscale analysis in terms of scaling functions. Classical Euclidean wavelet theory appears not to be the appropriate choice. Ansatz functions are chosen to be reflecting the rotational invariance of the ball. In these terms, the operator itself is finally decomposed and replaced by versions more manageable, revealing structural information about itself. Part C: Wavelets on the 3–dimensional Ball In this article wavelets on a ball in R^3 are introduced. Corresponding properties like an approximate identity and decomposition/reconstruction (scale step property) are proved. The advantage of this approach compared to a classical Fourier analysis in orthogonal polynomials is a better localization of the used ansatz functions.

24

We will give explicit differentiation and integration rules for homogeneous harmonic polynomial polynomials and spherical harmonics in IR^3 with respect to the following differential operators: partial_1, partial_2, partial_3, x_3 partial_2 - x_2 partial_3, x_3 partial_1 - x_1 partial_3, x_2 partial_1 - x_1 partial_2 and x_1 partial_1 + x_2 partial_2 + x_3 partial_3. A numerical application to the problem of determining the geopotential field will be shown.

25

We analyze the regular oblique boundary problem for the Poisson equation on a C^1-domain with stochastic inhomogeneities. At first we investigate the deterministic problem. Since our assumptions on the inhomogeneities and coefficients are very weak, already in order to formulate the problem we have to work out properties of functions from Sobolev spaces on submanifolds. An further analysis of Sobolev spaces on submanifolds together with the Lax-Milgram lemma enables us to prove an existence and uniqueness result for weak solution to the oblique boundary problem under very weak assumptions on coefficients and inhomogeneities. Then we define the spaces of stochastic functions with help of the tensor product. These spaces enable us to extend the deterministic formulation to the stochastic setting. Under as weak assumptions as in the deterministic case we are able to prove the existence and uniqueness of a stochastic weak solution to the regular oblique boundary problem for the Poisson equation. Our studies are motivated by problems from geodesy and through concrete examples we show the applicability of our results. Finally a Ritz-Galerkin approximation is provided. This can be used to compute the stochastic weak solution numerically.