## Schriften zur Funktionalanalysis und Geomathematik

### Refine

#### Year of publication

- 2004 (8) (remove)

#### Document Type

- Preprint (4)
- Report (3)
- Working Paper (1)

#### Language

- English (8) (remove)

#### Keywords

- Inverses Problem (3)
- Regularisierung (3)
- Wavelet (3)
- Kugel (2)
- Mehrskalenanalyse (2)
- Approximation (1)
- Biot-Savart Operator (1)
- Biot-Savart operator (1)
- CHAMP <Satellitenmission> (1)
- Cauchy-Navier equation (1)
- Cauchy-Navier-Gleichung (1)
- Dirichlet-Problem (1)
- Elastische Deformation (1)
- Fast Pseudo Spectral Algorithm (1)
- Galerkin-Methode (1)
- Gaussian random noise (1)
- Geomagnetic Field Modelling (1)
- Geomagnetismus (1)
- Geomathematik (1)
- Geostrophisches Gleichgewicht (1)
- Globale nichtlineare Analysis (1)
- Gravimetrie (1)
- Gravitationsfeld (1)
- Helmholtz-Decomposition (1)
- Helmholtz-Zerlegung (1)
- Incompressible Navier-Stokes (1)
- Inkompressibel Navier-Stokes (1)
- Inkorrekt gestelltes Problem (1)
- Kugelflächenfunktion (1)
- Mie-Darstellung (1)
- Mie-Representation (1)
- Molodensky Problem (1)
- Molodensky problem (1)
- Navier-Stokes-Gleichung (1)
- Neumann-Problem (1)
- Nichtlineares Galerkinverfahren (1)
- Nonlinear Galerkin Method (1)
- Regularization (1)
- SGG (1)
- SST (1)
- Satellitengradiogravimetrie (1)
- Satellitengradiometrie (1)
- Schnelle Fourier-Transformation (1)
- Skalierungsfunktion (1)
- Tensor Spherical Harmonics (1)
- Vector Spherical Harmonics (1)
- Vectorial Wavelets (1)
- Vektor-Wavelets (1)
- Vektorkugelfunktionen (1)
- Vektorwavelets (1)
- Wavelet Analysis auf regulären Flächen (1)
- Wavelet-Analyse (1)
- Weißes Rauschen (1)
- geomathematics (1)
- harmonic density (1)
- harmonic scaling functions and wavelets (1)
- harmonische Dichte (1)
- multiscale approximation on regular telluroidal surfaces (1)
- satellite gravity gradiometry (1)
- severely ill-posed inverse problems (1)
- vector spherical harmonics (1)
- vectorial wavelets (1)

11

This work is concerned with a nonlinear Galerkin method for solving the incompressible Navier-Stokes equation on the sphere. It extends the work of Debussche, Marion,Shen, Temam et al. from one-dimensional or toroidal domains to the spherical geometry. In the first part, the method based on type 3 vector spherical harmonics is introduced and convergence is indicated. Further it is shown that the occurring coupling terms involving three vector spherical harmonics can be expressed algebraically in terms of Wigner-3j coefficients. To improve the numerical efficiency and economy we introduce an FFT based pseudo spectral algorithm for computing the Fourier coefficients of the nonlinear advection term. The resulting method scales with O(N^3), if N denotes the maximal spherical harmonic degree. The latter is demonstrated in an extensive numerical example.

10

The following two papers present recent developments in multiscale ocean circulation modeling and multiscale gravitational field modeling that have been presented at the 2nd International GOCE User Workshop 2004 in Frascati. Part A - Multiscale Modeling of Ocean Circulation In this paper the applicability of multiscale methods to oceanography is demonstrated. More precisely, we use convolutions with certain locally supported kernels to approximate the dynamic topography and the geostrophic flow. As data sets the French CLS01 data are used for the mean sea surface topography and are compared to the EGM96 geoid. Since those two data sets have very different levels of spatial resolutions the necessity of an interpolating or approximating tool is evident. Compared to the standard spherical harmonics approach, the strongly space localizing kernels improve the possibilities of local data analysis here. Part B - Multiscale Modeling from EIGEN-1S, EIGEN-2, EIGEN-GRACE01S, GGM01, UCPH2002_0.5, EGM96 Spherical wavelets have been developed by the Geomathematics Group Kaiserslautern for several years and have been successfully applied to georelevant problems. Wavelets can be considered as consecutive band-pass filters and allow local approximations. The wavelet transform can also be applied to spherical harmonic models of the Earth's gravitational field like the most up-to-date EIGEN-1S, EIGEN-2, EIGEN-GRACE01S, GGM01, UCPH2002_0.5, and the well-known EGM96. Thereby, wavelet coefficients arise. In this paper it is the aim of the Geomathematics Group to make these data available to other interested groups. These wavelet coefficients allow not only the reconstruction of the wavelet approximations of the gravitational potential but also of the geoid, of the gravity anomalies and other important functionals of the gravitational field. Different types of wavelets are considered: bandlimited wavelets (here: Shannon and Cubic Polynomial (CuP)) as well as non-bandlimited ones (in our case: Abel-Poisson). For these types wavelet coefficients are computed and wavelet variances are given. The data format of the wavelet coefficients is also included.

14

Based on the well-known results of classical potential theory, viz. the limit and jump relations for layer integrals, a numerically viable and e±cient multiscale method of approximating the disturbing potential from gravity anomalies is established on regular surfaces, i.e., on telluroids of ellipsoidal or even more structured geometric shape. The essential idea is to use scale dependent regularizations of the layer potentials occurring in the integral formulation of the linearized Molodensky problem to introduce scaling functions and wavelets on the telluroid. As an application of our multiscale approach some numerical examples are presented on an ellipsoidal telluroid.

13

The mathematical formulation of many physical problems results in the task of inverting a compact operator. The only known sensible solution technique is regularization which poses a severe problem in itself. Classically one dealt with deterministic noise models and required both the knowledge of smoothness of the solution function and the overall error behavior. We will show that we can guarantee an asymptotically optimal regularization for a physically motivated noise model under no assumptions for the smoothness and rather weak assumptions on the noise behavior which can mostly obtained out of two input data sets. An application to the determination of the gravitational field out of satellite data will be shown.

8

The inverse problem of recovering the Earth's density distribution from data of the first or second derivative of the gravitational potential at satellite orbit height is discussed for a ball-shaped Earth. This problem is exponentially ill-posed. In this paper a multiscale regularization technique using scaling functions and wavelets constructed for the corresponding integro-differential equations is introduced and its numerical applications are discussed. In the numerical part the second radial derivative of the gravitational potential at 200 km orbitheight is calculated on a point grid out of the NASA/GSFC/NIMA Earth Geopotential Model (EGM96). Those simulated derived data out of SGG (satellite gravity gradiometry) satellite measurements are taken for convolutions with the introduced scaling functions yielding a multiresolution analysis of harmonic density variations in the Earth's crust. Moreover, the noise sensitivity of the regularization technique is analyzed numerically.

9

In this paper we introduce a multiscale technique for the analysis of deformation phenomena of the Earth. Classically, the basis functions under use are globally defined and show polynomial character. In consequence, only a global analysis of deformations is possible such that, for example, the water load of an artificial reservoir is hardly to model in that way. Up till now, the alternative to realize a local analysis can only be established by assuming the investigated region to be flat. In what follows we propose a local analysis based on tools (Navier scaling functions and wavelets) taking the (spherical) surface of the Earth into account. Our approach, in particular, enables us to perform a zooming-in procedure. In fact, the concept of Navier wavelets is formulated in such a way that subregions with larger or smaller data density can accordingly be modelled with a higher or lower resolution of the model, respectively.

5

The article is concerned with the modelling of ionospheric current systems from induced magnetic fields measured by satellites in a multiscale framework. Scaling functions and wavelets are used to realize a multiscale analysis of the function spaces under consideration and to establish a multiscale regularization procedure for the inversion of the considered vectorial operator equation. Based on the knowledge of the singular system a regularization technique in terms of certain product kernels and corresponding convolutions can be formed. In order to reconstruct ionospheric current systems from satellite magnetic field data, an inversion of the Biot-Savart's law in terms of multiscale regularization is derived. The corresponding operator is formulated and the singular values are calculated. The method is tested on real magnetic field data of the satellite CHAMP and the proposed satellite mission SWARM.

7

A wavelet technique, the wavelet-Mie-representation, is introduced for the analysis and modelling of the Earth's magnetic field and corresponding electric current distributions from geomagnetic data obtained within the ionosphere. The considerations are essentially based on two well-known geomathematical keystones, (i) the Helmholtz-decomposition of spherical vector fields and (ii) the Mie-representation of solenoidal vector fields in terms of poloidal and toroidal parts. The wavelet-Mie-representation is shown to provide an adequate tool for geomagnetic modelling in the case of ionospheric magnetic contributions and currents which exhibit spatially localized features. An important example are ionospheric currents flowing radially onto or away from the Earth. To demonstrate the functionality of the approach, such radial currents are calculated from vectorial data of the MAGSAT and CHAMP satellite missions.