## Schriften zur Funktionalanalysis und Geomathematik

37

11

This work is concerned with a nonlinear Galerkin method for solving the incompressible Navier-Stokes equation on the sphere. It extends the work of Debussche, Marion,Shen, Temam et al. from one-dimensional or toroidal domains to the spherical geometry. In the first part, the method based on type 3 vector spherical harmonics is introduced and convergence is indicated. Further it is shown that the occurring coupling terms involving three vector spherical harmonics can be expressed algebraically in terms of Wigner-3j coefficients. To improve the numerical efficiency and economy we introduce an FFT based pseudo spectral algorithm for computing the Fourier coefficients of the nonlinear advection term. The resulting method scales with O(N^3), if N denotes the maximal spherical harmonic degree. The latter is demonstrated in an extensive numerical example.

24

We will give explicit differentiation and integration rules for homogeneous harmonic polynomial polynomials and spherical harmonics in IR^3 with respect to the following differential operators: partial_1, partial_2, partial_3, x_3 partial_2 - x_2 partial_3, x_3 partial_1 - x_1 partial_3, x_2 partial_1 - x_1 partial_2 and x_1 partial_1 + x_2 partial_2 + x_3 partial_3. A numerical application to the problem of determining the geopotential field will be shown.