## Reports on Computer Algebra (ZCA Report)

### Filtern

#### Schlagworte

- Gröbner bases (2)
- coset enumeration (2)
- subgroup problem (2)
- Abelian groups (1)
- Coxeter groups (1)
- Gröbner base (1)
- Gröbner bases in monoid and group rings (1)
- Hamiltonian groups (1)
- Monoid and group rings (1)
- Word problem (1)

- 9
- Introducing Reduction to Polycyclic Group Rings - A Comparison of Methods (1996)
- t is well-known that for the integral group ring of a polycyclic group several decision problems are decidable. In this paper a technique to solve themembership problem for right ideals originating from Baumslag, Cannonito and Miller and studied by Sims is outlined. We want to analyze, how thesedecision methods are related to Gröbner bases. Therefore, we define effective reduction for group rings over Abelian groups, nilpotent groups and moregeneral polycyclic groups. Using these reductions we present generalizations of Buchberger's Gröbner basis method by giving an appropriate definition of"Gröbner bases" in the respective setting and by characterizing them using concepts of saturation and s-polynomials.

- 12
- MP Prototype Specification (1997)

- 14
- Relating Rewriting Techniques on Monoids and Rings: Congruences on Monoids and Ideals in Monoid Rings (1997)
- A first explicit connection between finitely presented commutative monoids and ideals in polynomial rings was used 1958 by Emelichev yielding a solution tothe word problem in commutative monoids by deciding the ideal membership problem. The aim of this paper is to show in a similar fashion how congruenceson monoids and groups can be characterized by ideals in respective monoid and group rings. These characterizations enable to transfer well known resultsfrom the theory of string rewriting systems for presenting monoids and groups to the algebraic setting of subalgebras and ideals in monoid respectively grouprings. Moreover, natural one-sided congruences defined by subgroups of a group are connected to one-sided ideals in the respective group ring and hencethe subgroup problem and the ideal membership problem are directly related. For several classes of finitely presented groups we show explicitly howGröbner basis methods are related to existing solutions of the subgroup problem by rewriting methods. For the case of general monoids and submonoidsweaker results are presented. In fact it becomes clear that string rewriting methods for monoids and groups can be lifted in a natural fashion to definereduction relations in monoid and group rings.

- 15
- Splitting algorithm for vector bundles (1997)
- A new criteria for indecomposability of vector bundles on projective varieties is presented. It is deduced from a new finite algorithm computing direct sumdecompositions of graded modules over graded algebras. This algorithm applies as well to modules over local complete algebras over a field.

- 16
- String Rewriting and Gröbner Bases - A General Approach to Monoid and Group Rings (1997)
- The concept of algebraic simplification is of great importance for the field of symbolic computation in computer algebra. In this paper we review somefundamental concepts concerning reduction rings in the spirit of Buchberger. The most important properties of reduction rings are presented. Thetechniques for presenting monoids or groups by string rewriting systems are used to define several types of reduction in monoid and group rings. Gröbnerbases in this setting arise naturally as generalizations of the corresponding known notions in the commutative and some non-commutative cases. Severalresults on the connection of the word problem and the congruence problem are proven. The concepts of saturation and completion are introduced formonoid rings having a finite convergent presentation by a semi-Thue system. For certain presentations, including free groups and context-free groups, theexistence of finite Gröbner bases for finitely generated right ideals is shown and a procedure to compute them is given.

- 17
- An algorithm for constructing isomorphisms of modules (1997)
- This paper is a continuation of a joint paper with B. Martin [MS] dealing with the problem of direct sum decompositions. The techniques of that paper areused to decide wether two modules are isomorphic or not. An positive answer to this question has many applications - for example for the classification ofmaximal Cohen-Macaulay module over local algebras as well as for the study of projective modules. Up to now computer algebra is normally dealing withequality of ideals or modules which depends on chosen embeddings. The present algorithm allows to switch to isomorphism classes which is more natural inthe sense of commutative algebra and algebraic geometry.

- 18
- Monomial Representations for Gröbner Bases Computations (1998)
- Monomial representations and operations for Gröbner bases computations are investigated from an implementation point of view. The technique ofvectorized monomial operations is introduced and it is shown how it expedites computations of Gröbner bases. Furthermore, a rank-based monomialrepresentation and comparison technique is examined and it is concluded that this technique does not yield an additional speedup over vectorizedcomparisons. Extensive benchmark tests with the Computer Algebra System SINGULAR are used to evaluate these concepts.

- 19
- A Note on Nielsen Reduction and Coset Enumeration (1998)
- Groups can be studied using methods from different fields such as combinatorial group theory or string rewriting. Recently techniques from Gröbner basis theory for free monoid rings (non-commutative polynomial rings) respectively free group rings have been added to the set of methods due to the fact that monoid and group presentations (in terms of string rewriting systems) can be linked to special polynomials called binomials. In the same mood, the aim of this paper is to discuss the relation between Nielsen reduced sets of generators and the Todd-Coxeter coset enumeration procedure on the one side and the Gröbner basis theory for free group rings on the other. While it is well-known that there is a strong relationship between Buchberger's algorithm and the Knuth-Bendix completion procedure, and there are interpretations of the Todd-Coxeter coset enumeration procedure using the Knuth-Bendix procedure for special cases, our aim is to show how a verbatim interpretation of the Todd-Coxeter procedure can be obtained by linking recent Gröbner techniques like prefix Gröbner bases and the FGLM algorithm as a tool to study the duality of ideals. As a side product our procedure computes Nielsen reduced generating sets for subgroups in finitely generated free groups.

- 20
- MRC - A System for Computing Gröbner Bases in Monoid and Group Rings (1998)
- Gröbner bases and Buchberger's algorithm have been generalized to monoid and group rings. In this paper we summarize procedures from this field and present a description of their implementation in the system Mrc V 1.0.