## Report in Wirtschaftsmathematik (WIMA Report)

- 97
- Stop Location Design in Public Transportation Networks: Covering and Accessibility Objectives (2006)
- In StopLoc we consider the location of new stops along the edges of an existing public transportation network. Examples of StopLoc include the location of bus stops along some given bus routes or of railway stations along the tracks in a railway system. In order to measure the ''convenience'' of the location decision for potential customers in given demand facilities, two objectives are proposed. In the first one, we give an upper bound on reaching a closest station from any of the demand facilities and minimize the number of stations. In the second objective, we fix the number of new stations and minimize the sum of the distances between demand facilities and stations. The resulting two problems CovStopLoc and AccessStopLoc are solved by a reduction to a classical set covering and a restricted location problem, respectively. We implement the general ideas in two different environments - the plane, where demand facilities are represented by coordinates and in networks, where they are nodes of a graph.

- 4
- Some Personal Views on the Current State and the Future of Locational Analysis (1997)
- In this paper a group of participants of the 12th European Summer Institute which took place in Tenerifa, Spain in June 1995 present their views on the state of the art and the future trends in Locational Analysis. The issue discussed includes modelling aspects in discrete, network and continuous location, heuristic techniques, the state of technology and undesirable facility location. Some general questions are stated reagrding the applicability of location models, promising research directions and the way technology affects the development of solution techniques.

- 69
- Some Complexity Results for k-Cardinality Minimum Cut Problems (2000)
- Many polynomially solvable combinatorial optimization problems (COP) become NP when we require solutions to satisfy an additional cardinality constraint. This family of problems has been considered only recently. We study a newproblem of this family: the k-cardinality minimum cut problem. Given an undirected edge-weighted graph the k-cardinality minimum cut problem is to find a partition of the vertex set V in two sets V 1 , V 2 such that the number of the edges between V 1 and V 2 is exactly k and the sum of the weights of these edges is minimal. A variant of this problem is the k-cardinality minimum s-t cut problem where s and t are fixed vertices and we have the additional request that s belongs to V 1 and t belongs to V 2 . We also consider other variants where the number of edges of the cut is constrained to be either less or greater than k. For all these problems we show complexity results in the most significant graph classes.

- 107
- Some asymptotics for local least-squares regression with regularization (2007)
- We derive some asymptotics for a new approach to curve estimation proposed by Mr'{a}zek et al. cite{MWB06} which combines localization and regularization. This methodology has been considered as the basis of a unified framework covering various different smoothing methods in the analogous two-dimensional problem of image denoising. As a first step for understanding this approach theoretically, we restrict our discussion here to the least-squares distance where we have explicit formulas for the function estimates and where we can derive a rather complete asymptotic theory from known results for the Priestley-Chao curve estimate. In this paper, we consider only the case where the bias dominates the mean-square error. Other situations are dealt with in subsequent papers.

- 55
- Some Applications of Impulse Control in Mathematical Finance (1999)
- We consider three applications of impulse control in financial mathematics, a cash management problem, optimal control of an exchange rate, and portfolio optimisation under transaction costs. We sketch the different ways of solving these problems with the help of quasi-variational inequalities. Further, some viscosity solution results are presented.

- 32
- Solving restricted line location problems via a dual interpretation (1999)
- In line location problems the objective is to find a straight line which minimizes the sum of distances, or the maximum distance, respectively to a given set of existing facilities in the plane. These problems have well solved. In this paper we deal with restricted line location problems, i.e. we have given a set in the plane where the line is not allowed to pass through. With the help of a geometric duality we solve such problems for the vertical distance and then extend these results to block norms and some of them even to arbitrary norms. For all norms we give a finite candidate set for the optimal line.

- 91
- Set Covering With Almost Consecutive Ones Property (2003)
- In this paper we consider set covering problems with a coefficient matrix almost having the consecutive ones property, i.e., in many rows of the coefficient matrix, the ones appear consecutively. If this property holds for all rows it is well known that the set covering problem can be solved efficiently. For our case of almost consecutive ones we present a reformulation exploiting the consecutive ones structure to develop bounds and a branching scheme. Our approach has been tested on real-world data as well as on theoretical problem instances.

- 99
- Semi-Simultaneous Flows and Binary Constrained (Integer) Linear Programs (2006)
- Linear and integer programs are considered whose coefficient matrices can be partitioned into K consecutive ones matrices. Mimicking the special case of K=1 which is well-known to be equivalent to a network flow problem we show that these programs can be transformed to a generalized network flow problem which we call semi-simultaneous (se-sim) network flow problem. Feasibility conditions for se-sim flows are established and methods for finding initial feasible se-sim flows are derived. Optimal se-sim flows are characterized by a generalization of the negative cycle theorem for the minimum cost flow problem. The issue of improving a given flow is addressed both from a theoretical and practical point of view. The paper concludes with a summary and some suggestions for possible future work in this area.

- 106
- Scheduling and Location (ScheLoc): Makespan Problem with Variable Release Dates (2007)
- While in classical scheduling theory the locations of machines are assumed to be fixed we will show how to tackle location and scheduling problems simultaneously. Obviously, this integrated approach enhances the modeling power of scheduling for various real-life problems. In this paper, we present in an exemplary way theory and a solution algorithm for a specific type of a scheduling and a rather general, planar location problem, respectively. More general results and a report on numerical tests will be presented in a subsequent paper.

- 30
- Saddle Points and Pareto Points in Multiple Objective Programming (1999)
- In this paper relationships between Pareto points and saddle points in multiple objective programming are investigated. Convex and nonconvex problems are considered and the equivalence between Pareto points and saddle points is proved in both cases. The results are based on scalarizations of multiple objective programs and related linear and augmented Lagrangian functions. Partitions of the index sets of objectives and constranints are introduced to reduce the size of the problems. The relevance of the results in the context of decision making is also discussed.