## Report in Wirtschaftsmathematik (WIMA Report)

### Refine

#### Year of publication

- 1999 (49) (remove)

#### Keywords

- Location Theory (5)
- Multicriteria Optimization (3)
- Algebraic Optimization (2)
- Combinatorial Optimization (2)
- Geometrical Algorithms (2)
- Algebraic optimization (1)
- Applications (1)
- Approximation (1)
- Approximation Algorithms (1)
- Autoregression (1)

- 40
- Convex Operators in Vector Optimization: Directional Derivatives and the Cone of Decrease Directions (1999)
- The paper is devoted to the investigation of directional derivatives and the cone of decrease directions for convex operators on Banach spaces. We prove a condition for the existence of directional derivatives which does not assume regularity of the ordering cone K. This result is then used to prove that for continuous convex operators the cone of decrease directions can be represented in terms of the directional derivatices . Decrease directions are those for which the directional derivative lies in the negative interior of the ordering cone K. Finally, we show that the continuity of the convex operator can be replaced by its K-boundedness.

- 36
- Median hyperplanes in normed spaces - a survey - (1999)
- In this survey we deal with the location of hyperplanes in n-dimensional normed spaces, i.e., we present all known results and a unifying approach to the so-called median hyperplane problem in Minkowski spaces. We describe how to find a hyperplane H minimizing the weighted sum f(H) of distances to a given, finite set of demand points. In robust statistics and operations research such an optimal hyperplane is called a median hyperplane.After summarizing the known results for the Euclidean and rectangular situation, we show that for all distance measures d derived from norms one of the hyperplanes minimizing f(H) is the affine hull of n of the demand points and, moreover, that each median hyperplane is a halving one (in a sense defined below) with respect to the geiven point set. Also an independence of norm result for finding optimal hyperplanes with fixed slope will be given. Furthermore we discuss how these geometric criteria can be used for algorithmical approaches to median hyperplanes, with an extra discussion for the case of polyhedral norms. And finally a characterizatio of all smooth norms by a sharpened incidence criterion for median hyperplanes is mentioned.

- 18
- Median hyperplanes in normed spaces (1999)
- In this paper we deal with the location of hyperplanes in n-dimensional normed spaces. If d is a distance measure, our objective is to find a hyperplane H which minimizes f(H) = sum_{m=1}^{M} w_{m}d(x_m,H), where w_m ge 0 are non-negative weights, x_m in R^n, m=1, ... ,M demand points and d(x_m,H)=min_{z in H} d(x_m,z) is the distance from x_m to the hyperplane H. In robust statistics and operations research such an optimal hyperplane is called a median hyperplane. We show that for all distance measures d derived from norms, one of the hyperplanes minimizing f(H) is the affine hull of n of the demand points and, moreover, that each median hyperplane is (ina certain sense) a halving one with respect to the given point set.

- 3
- Locating Least-Distance Lines in the Plane (1999)
- In this paper we deal with locating a line in the plane. If d is a distance measure our objective is to find a straight line l which minimizes f(l) of g(l) (see the paper for the definition of these functions). We show that for all distance measures d derived from norms, one of the lines minimizing f(l) contains at least two of the existing facilities. For the center objective we always get an optimal line which is at maximum distance from at least three of the existing facilities. If all weights are equal, there is an optimal line which is parallel to one facet of the convex hull of the existing facilities.

- 32
- Solving restricted line location problems via a dual interpretation (1999)
- In line location problems the objective is to find a straight line which minimizes the sum of distances, or the maximum distance, respectively to a given set of existing facilities in the plane. These problems have well solved. In this paper we deal with restricted line location problems, i.e. we have given a set in the plane where the line is not allowed to pass through. With the help of a geometric duality we solve such problems for the vertical distance and then extend these results to block norms and some of them even to arbitrary norms. For all norms we give a finite candidate set for the optimal line.

- 10
- A reduction algorithm for integer multiple objective linear programs (1999)
- We consider a multiple objective linear program (MOLP) max{Cx|Ax = b,x in N_{0}^{n}} where C = (c_ij) is the p x n - matrix of p different objective functions z_i(x) = c_{i1}x_1 + ... + c_{in}x_n , i = 1,...,p and A is the m x n - matrix of a system of m linear equations a_{k1}x_1 + ... + a_{kn}x_n = b_k , k=1,...,m which form the set of constraints of the problem. All coefficients are assumed to be natural numbers or zero. The set M of admissable solutions {hat x} is an admissible solution such that there exists no other admissable solution x' with C{hat x} Cx'. The efficient solutions play the role of optimal solutions for the MOLP and it is our aim to determine the set of all efficient solutions

- 16
- Multiple objective programming with piecewise linear functions (1999)
- An approach to generating all efficient solutions of multiple objective programs with piecewise linear objective functions and linear constraints is presented. The approach is based on the decomposition of the feasible set into subsets, referred to as cells, so that the original problem reduces to a series of lenear multiple objective programs over the cells. The concepts of cell-efficiency and complex-efficiency are introduced and their relationship with efficiency is examined. A generic algorithm for finding efficent solutions is proposed. Applications in location theory as well as in worst case analysis are highlighted.

- 27
- A geometric approach to global optimization (1999)
- In this paper we consider the problem of optimizing a piecewise-linear objective function over a non-convex domain. In particular we do not allow the solution to lie in the interior of a prespecified region R. We discuss the geometrical properties of this problems and present algorithms based on combinatorial arguments. In addition we show how we can construct quite complicated shaped sets R while maintaining the combinatorial properties.

- 26
- A flexible approach to location problems (1999)
- In continous location problems we are given a set of existing facilities and we are looking for the location of one or several new facilities. In the classical approaches weights are assigned to existing facilities expressing the importance of the new facilities for the existing ones. In this paper, we consider a pointwise defined objective function where the weights are assigned to the existing facilities depending on the location of the new facility. This approach is shown to be a generalization of the median, center and centdian objective functions. In addition, this approach allows to formulate completely new location models. Efficient algorithms as well as structure results for this algebraic approach for location problems are presented. Extensions to the multifacility and restricted case are also considered.

- 28
- General Continuous Multicriteria Location Problems (1999)
- In this paper we deal with the determination of the whole set of Pareto-solutions of location problems with respect to Q general criteria. These criteria include as particular instances median, center or cent-dian objective functions. The paper characterizes the set of Pareto-solutions of all these multicriteria problems. An efficient algorithm for the planar case is developed and its complexity is established. the proposed approach is more general than the previously published approaches to multicriteria location problems and includes almost all of them as particular instances.