## Report in Wirtschaftsmathematik (WIMA Report)

### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (138)
- Bericht (16)
- Wissenschaftlicher Artikel (2)
- Arbeitspapier (1)

#### Schlagworte

- 128
- Universal Shortest Paths (2010)
- We introduce the universal shortest path problem (Univ-SPP) which generalizes both - classical and new - shortest path problems. Starting with the definition of the even more general universal combinatorial optimization problem (Univ-COP), we show that a variety of objective functions for general combinatorial problems can be modeled if all feasible solutions have the same cardinality. Since this assumption is, in general, not satisfied when considering shortest paths, we give two alternative definitions for Univ-SPP, one based on a sequence of cardinality contrained subproblems, the other using an auxiliary construction to establish uniform length for all paths between source and sink. Both alternatives are shown to be (strongly) NP-hard and they can be formulated as quadratic integer or mixed integer linear programs. On graphs with specific assumptions on edge costs and path lengths, the second version of Univ-SPP can be solved as classical sum shortest path problem.

- 147
- On the Generality of the Greedy Algorithm for Solving Matroid Base Problems (2013)
- It is well known that the greedy algorithm solves matroid base problems for all linear cost functions and is, in fact, correct if and only if the underlying combinatorial structure of the problem is a matroid. Moreover, the algorithm can be applied to problems with sum, bottleneck, algebraic sum or \(k\)-sum objective functions.

- 140
- Variants of the Shortest Path Problem (2011)
- The shortest path problem in which the \((s,t)\)-paths \(P\) of a given digraph \(G =(V,E)\) are compared with respect to the sum of their edge costs is one of the best known problems in combinatorial optimization. The paper is concerned with a number of variations of this problem having different objective functions like bottleneck, balanced, minimum deviation, algebraic sum, \(k\)-sum and \(k\)-max objectives, \((k_1, k_2)-max, (k_1, k_2)\)-balanced and several types of trimmed-mean objectives. We give a survey on existing algorithms and propose a general model for those problems not yet treated in literature. The latter is based on the solution of resource constrained shortest path problems with equality constraints which can be solved in pseudo-polynomial time if the given graph is acyclic and the number of resources is fixed. In our setting, however, these problems can be solved in strongly polynomial time. Combining this with known results on \(k\)-sum and \(k\)-max optimization for general combinatorial problems, we obtain strongly polynomial algorithms for a variety of path problems on acyclic and general digraphs.

- 40
- Convex Operators in Vector Optimization: Directional Derivatives and the Cone of Decrease Directions (1999)
- The paper is devoted to the investigation of directional derivatives and the cone of decrease directions for convex operators on Banach spaces. We prove a condition for the existence of directional derivatives which does not assume regularity of the ordering cone K. This result is then used to prove that for continuous convex operators the cone of decrease directions can be represented in terms of the directional derivatices . Decrease directions are those for which the directional derivative lies in the negative interior of the ordering cone K. Finally, we show that the continuity of the convex operator can be replaced by its K-boundedness.

- 75
- Earliest Arrival Flow with Time Dependent Capacity Approach to the Evacuation Problems (2001)
- Abstract: Evacuation problems can be modeled as flow problems in dynamic networks. A dynamic network is defined by a directed graph G = (N,A) with sources, sinks and non-negative integral travel times and capacities for every arc (i,j) e A. The earliest arrival flow problem is to send a maximum amount of dynamic flow reaching the sink not only for the given time horizon T, but also for any time T' < T . This problem mimics the evacuation problem of public buildings where occupancies may not known. For the buildings where the number of occupancies is known and concentrated only in one source, the quickest flow model is used to find the minimum egress time. We propose in this paper a solution procedure for evacuation problems with a single source of the building where the occupancy number is either known or unknown. The possibility that the flow capacity may change due to the increasing of smoke density or fire obstructions can be mirrored in our model. The solution procedure looks iteratively for the shortest conditional augmenting path (SCAP) from source to sink and compute the time intervals in which flow reaches the sink via this path.

- 143
- Complexity and Approximability of the Maximum Flow Problem with Minimum Quantities (2012)
- We consider the maximum flow problem with minimum quantities (MFPMQ), which is a variant of the maximum flow problem where the flow on each arc in the network is restricted to be either zero or above a given lower bound (a minimum quantity), which may depend on the arc. This problem has recently been shown to be weakly NP-complete even on series-parallel graphs. In this paper, we provide further complexity and approximability results for MFPMQ and several special cases. We first show that it is strongly NP-hard to approximate MFPMQ on general graphs (and even bipartite graphs) within any positive factor. On series-parallel graphs, however, we present a pseudo-polynomial time dynamic programming algorithm for the problem. We then study the case that the minimum quantity is the same for each arc in the network and show that, under this restriction, the problem is still weakly NP-complete on general graphs, but can be solved in strongly polynomial time on series-parallel graphs. On general graphs, we present a \((2 - 1/\lambda) \)-approximation algorithm for this case, where \(\lambda\) denotes the common minimum quantity of all arcs.

- 119
- Truthful Mechanisms for Selfish Routing and Two-Parameter Agents (2009)
- We prove a general monotonicity result about Nash flows in directed networks and use it for the design of truthful mechanisms in the setting where each edge of the network is controlled by a different selfish agent, who incurs costs when her edge is used. The costs for each edge are assumed to be linear in the load on the edge. To compensate for these costs, the agents impose tolls for the usage of edges. When nonatomic selfish network users choose their paths through the network independently and each user tries to minimize a weighted sum of her latency and the toll she has to pay to the edges, a Nash flow is obtained. Our monotonicity result implies that the load on an edge in this setting can not increase when the toll on the edge is increased, so the assignment of load to the edges by a Nash flow yields a monotone algorithm. By a well-known result, the monotonicity of the algorithm then allows us to design truthful mechanisms based on the load assignment by Nash flows. Moreover, we consider a mechanism design setting with two-parameter agents, which is a generalization of the case of one-parameter agents considered in a seminal paper of Archer and Tardos. While the private data of an agent in the one-parameter case consists of a single nonnegative real number specifying the agent's cost per unit of load assigned to her, the private data of a two-parameter agent consists of a pair of nonnegative real numbers, where the first one specifies the cost of the agent per unit load as in the one-parameter case, and the second one specifies a fixed cost, which the agent incurs independently of the load assignment. We give a complete characterization of the set of output functions that can be turned into truthful mechanisms for two-parameter agents. Namely, we prove that an output function for the two-parameter setting can be turned into a truthful mechanism if and only if the load assigned to every agent is nonincreasing in the agent's bid for her per unit cost and, for almost all fixed bids for the agent's per unit cost, the load assigned to her is independent of the agent's bid for her fixed cost. When the load assigned to an agent is continuous in the agent's bid for her per unit cost, it must be completely independent of the agent's bid for her fixed cost. These results motivate our choice of linear cost functions without fixed costs for the edges in the selfish routing setting, but the results also seem to be interesting in the context of algorithmic mechanism design themselves.

- 115
- A Class of Switching Regimes Autoregressive Driven Processes with Exogenous Components (2008)
- In this paper we develop a data-driven mixture of vector autoregressive models with exogenous components. The process is assumed to change regimes according to an underlying Markov process. In contrast to the hidden Markov setup, we allow the transition probabilities of the underlying Markov process to depend on past time series values and exogenous variables. Such processes have potential applications to modeling brain signals. For example, brain activity at time t (measured by electroencephalograms) will can be modeled as a function of both its past values as well as exogenous variables (such as visual or somatosensory stimuli). Furthermore, we establish stationarity, geometric ergodicity and the existence of moments for these processes under suitable conditions on the parameters of the model. Such properties are important for understanding the stability properties of the model as well as deriving the asymptotic behavior of various statistics and model parameter estimators.

- 146
- Maximum Likelihood Estimators for Multivariate Hidden Markov Mixture Models (2013)
- In this paper we consider a multivariate switching model, with constant states means and covariances. In this model, the switching mechanism between the basic states of the observed time series is controlled by a hidden Markov chain. As illustration, under Gaussian assumption on the innovations and some rather simple conditions, we prove the consistency and asymptotic normality of the maximum likelihood estimates of the model parameters.