## Report in Wirtschaftsmathematik (WIMA Report)

### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (135)
- Bericht (15)
- Wissenschaftlicher Artikel (2)
- Arbeitspapier (1)

#### Sprache

- Englisch (153) (entfernen)

#### Schlagworte

- 4
- Some Personal Views on the Current State and the Future of Locational Analysis (1997)
- In this paper a group of participants of the 12th European Summer Institute which took place in Tenerifa, Spain in June 1995 present their views on the state of the art and the future trends in Locational Analysis. The issue discussed includes modelling aspects in discrete, network and continuous location, heuristic techniques, the state of technology and undesirable facility location. Some general questions are stated reagrding the applicability of location models, promising research directions and the way technology affects the development of solution techniques.

- 113
- A new sequential extraction heuristic for optimising the delivery of cancer radiation treatment using multileaf collimators (2008)
- Finding a delivery plan for cancer radiation treatment using multileaf collimators operating in ''step-and-shoot mode'' can be formulated mathematically as a problem of decomposing an integer matrix into a weighted sum of binary matrices having the consecutive-ones property - and sometimes other properties related to the collimator technology. The efficiency of the delivery plan is measured by both the sum of weights in the decomposition, known as the total beam-on time, and the number of different binary matrices appearing in it, referred to as the cardinality, the latter being closely related to the set-up time of the treatment. In practice, the total beam-on time is usually restricted to its minimum possible value, (which is easy to find), and a decomposition that minimises cardinality (subject to this restriction) is sought.

- 93
- Decomposition of Integer Matrices and Multileaf Collimator Sequencing (2004)
- In this paper we consider the problem of decomposing an integer matrix into a weighted sum of binary matrices that have to strict consecutive ones property.

- 132
- Train Marshalling Problem - Algorithms and Bounds - (2010)
- The Train Marshalling Problem consists of rearranging an incoming train in a marshalling yard in such a way that cars with the same destinations appear consecutively in the final train and the number of needed sorting tracks is minimized. Besides an initial roll-in operation, just one pull-out operation is allowed. This problem was introduced by Dahlhaus et al. who also showed that the problem is NP-complete. In this paper, we provide a new lower bound on the optimal objective value by partitioning an appropriate interval graph. Furthermore, we consider the corresponding online problem, for which we provide upper and lower bounds on the competitiveness and a corresponding optimal deterministic online algorithm. We provide an experimental evaluation of our lower bound and algorithm which shows the practical tightness of the results.

- 125
- Generalized Max Flow in Series-Parallel Graphs (2010)
- In the generalized max flow problem, the aim is to find a maximum flow in a generalized network, i.e., a network with multipliers on the arcs that specify which portion of the flow entering an arc at its tail node reaches its head node. We consider this problem for the class of series-parallel graphs. First, we study the continuous case of the problem and prove that it can be solved using a greedy approach. Based on this result, we present a combinatorial algorithm that runs in O(m*m) time and a dynamic programming algorithm with running time O(m*log(m)) that only computes the maximum flow value but not the flow itself. For the integral version of the problem, which is known to be NP-complete, we present a pseudo-polynomial algorithm.

- 48
- Local Search Algorithms for the k-Cardinality Tree Problem (1999)
- In this paper we deal with an NP-hard combinatorial optimization problem, the k-cardinality tree problem in node weighted graphs. This problem has several applications , which justify the need for efficient methods to obtain good solutions. We review existing literature on the problem. Then we prove that under the condition that the graph contains exactly one trough, the problem can be solved in ploynomial time. For the general NP-hard problem we implemented several local search methods to obtain heuristics solutions, which are qualitatively better than solutions found by constructive heuristics and which require significantly less time than needed to obtain optimal solutions. We used the well known concepts of genetic algorithms and tabu search with useful extensions. We show that all the methods find optimal solutions for the class of graphs containing exactly one trough. The general performance of our methods as compared to other heuristics is illustrated by numerical results.

- 149
- Edgeworth expansions for lattice triangular arrays (2014)
- Edgeworth expansions have been introduced as a generalization of the central limit theorem and allow to investigate the convergence properties of sums of i.i.d. random variables. We consider triangular arrays of lattice random vectors and obtain a valid Edgeworth expansion for this case. The presented results can be used, for example, to study the convergence behavior of lattice models.

- 65
- On the Connectedness of Efficient Solutions in Combinatorial Optimization Problems and Ordered Graphs - Matching and Partial Orders - (2000)
- In multicriteria optimization problems the connectedness of the set of efficient solutions (pareto set) is of special interest since it would allow the determination of the efficient solutions without considering non-efficient solutions in the process. In the case of the multicriteria problem to minimize matchings the set of efficient solutions is not connected. The set of minimal solutions E pot with respect to the power ordered set contains the pareto set. In this work theorems about connectedness of E pot are given. These lead to an automated process to detect all efficient solutions.

- 24
- Minimal paths on ordered graphs (1999)
- To present the decision maker's (DM) preferences in multicriteria decision problems as a partially ordered set is an effective method to catch the DM's purpose and avoid misleading results. Since our paper is focused on minimal path problems, we regard the ordered set of edges (E,=). Minimal paths are defined in repect to power-ordered sets which provides an essential tool to solve such problems. An algorithm to detect minimal paths on a multicriteria minimal path problem is presented