## Report in Wirtschaftsmathematik (WIMA Report)

- 149
- Edgeworth expansions for lattice triangular arrays (2014)
- Edgeworth expansions have been introduced as a generalization of the central limit theorem and allow to investigate the convergence properties of sums of i.i.d. random variables. We consider triangular arrays of lattice random vectors and obtain a valid Edgeworth expansion for this case. The presented results can be used, for example, to study the convergence behavior of lattice models.

- 148
- Monitoring time series based on estimating functions (2014)
- A large class of estimators including maximum likelihood, least squares and M-estimators are based on estimating functions. In sequential change point detection related monitoring functions can be used to monitor new incoming observations based on an initial estimator, which is computationally efficient because possible numeric optimization is restricted to the initial estimation. In this work, we give general regularity conditions under which we derive the asymptotic null behavior of the corresponding tests in addition to their behavior under alternatives, where conditions become particularly simple for sufficiently smooth estimating and monitoring functions. These regularity conditions unify and even extend a large amount of existing procedures in the literature, while they also allow us to derive monitoring schemes in time series that have not yet been considered in the literature including non-linear autoregressive time series and certain count time series such as binary or Poisson autoregressive models. We do not assume that the estimating and monitoring function are equal or even of the same dimension, allowing for example to combine a non-robust but more precise initial estimator with a robust monitoring scheme. Some simulations and data examples illustrate the usefulness of the described procedures.

- 147
- On the Generality of the Greedy Algorithm for Solving Matroid Base Problems (2013)
- It is well known that the greedy algorithm solves matroid base problems for all linear cost functions and is, in fact, correct if and only if the underlying combinatorial structure of the problem is a matroid. Moreover, the algorithm can be applied to problems with sum, bottleneck, algebraic sum or \(k\)-sum objective functions.

- 146
- Maximum Likelihood Estimators for Multivariate Hidden Markov Mixture Models (2013)
- In this paper we consider a multivariate switching model, with constant states means and covariances. In this model, the switching mechanism between the basic states of the observed time series is controlled by a hidden Markov chain. As illustration, under Gaussian assumption on the innovations and some rather simple conditions, we prove the consistency and asymptotic normality of the maximum likelihood estimates of the model parameters.

- 145
- The Generalized Assignment Problem with Minimum Quantities (2012)
- We consider a variant of the generalized assignment problem (GAP) where the amount of space used in each bin is restricted to be either zero (if the bin is not opened) or above a given lower bound (a minimum quantity). We provide several complexity results for different versions of the problem and give polynomial time exact algorithms and approximation algorithms for restricted cases. For the most general version of the problem, we show that it does not admit a polynomial time approximation algorithm (unless P=NP), even for the case of a single bin. This motivates to study dual approximation algorithms that compute solutions violating the bin capacities and minimum quantities by a constant factor. When the number of bins is fixed and the minimum quantity of each bin is at least a factor \(\delta>1\) larger than the largest size of an item in the bin, we show how to obtain a polynomial time dual approximation algorithm that computes a solution violating the minimum quantities and bin capacities by at most a factor \(1-\frac{1}{\delta}\) and \(1+\frac{1}{\delta}\), respectively, and whose profit is at least as large as the profit of the best solution that satisfies the minimum quantities and bin capacities strictly. In particular, for \(\delta=2\), we obtain a polynomial time (1,2)-approximation algorithm.

- 144
- A limitation of the estimation of intrinsic volumes via pixel configuration counts (2012)
- It is often helpful to compute the intrinsic volumes of a set of which only a pixel image is observed. A computational efficient approach, which is suggested by several authors and used in practice, is to approximate the intrinsic volumes by a linear functional of the pixel configuration histogram. Here we want to examine, whether there is an optimal way of choosing this linear functional, where we will use a quite natural optimality criterion that has already been applied successfully for the estimation of the surface area. We will see that for intrinsic volumes other than volume or surface area this optimality criterion cannot be used, since estimators which ignore the data and return constant values are optimal w.r.t. this criterion. This shows that one has to be very careful, when intrinsic volumes are approximated by a linear functional of the pixel configuration histogram.

- 143
- Complexity and Approximability of the Maximum Flow Problem with Minimum Quantities (2012)
- We consider the maximum flow problem with minimum quantities (MFPMQ), which is a variant of the maximum flow problem where the flow on each arc in the network is restricted to be either zero or above a given lower bound (a minimum quantity), which may depend on the arc. This problem has recently been shown to be weakly NP-complete even on series-parallel graphs. In this paper, we provide further complexity and approximability results for MFPMQ and several special cases. We first show that it is strongly NP-hard to approximate MFPMQ on general graphs (and even bipartite graphs) within any positive factor. On series-parallel graphs, however, we present a pseudo-polynomial time dynamic programming algorithm for the problem. We then study the case that the minimum quantity is the same for each arc in the network and show that, under this restriction, the problem is still weakly NP-complete on general graphs, but can be solved in strongly polynomial time on series-parallel graphs. On general graphs, we present a \((2 - 1/\lambda) \)-approximation algorithm for this case, where \(\lambda\) denotes the common minimum quantity of all arcs.

- 142
- An online approach to detecting changes in nonlinear autoregressive models (2011)
- In this paper we develop monitoring schemes for detecting structural changes in nonlinear autoregressive models. We approximate the regression function by a single layer feedforward neural network. We show that CUSUM-type tests based on cumulative sums of estimated residuals, that have been intensively studied for linear regression in both an offline as well as online setting, can be extended to this model. The proposed monitoring schemes reject (asymptotically) the null hypothesis only with a given probability but will detect a large class of alternatives with probability one. In order to construct these sequential size tests the limit distribution under the null hypothesis is obtained.

- 141
- Changepoint tests for INARCH time series (2011)
- In this paper, we discuss the problem of testing for a changepoint in the structure of an integer-valued time series. In particular, we consider a test statistic of cumulative sum (CUSUM) type for general Poisson autoregressions of order 1. We investigate the asymptotic behaviour of conditional least-squares estimates of the parameters in the presence of a changepoint. Then, we derive the asymptotic distribution of the test statistic under the hypothesis of no change, allowing for the calculation of critical values. We prove consistency of the test, i.e. asymptotic power 1, and consistency of the corresponding changepoint estimate. As an application, we have a look at changepoint detection in daily epileptic seizure counts from a clinical study.

- 140
- Variants of the Shortest Path Problem (2011)
- The shortest path problem in which the \((s,t)\)-paths \(P\) of a given digraph \(G =(V,E)\) are compared with respect to the sum of their edge costs is one of the best known problems in combinatorial optimization. The paper is concerned with a number of variations of this problem having different objective functions like bottleneck, balanced, minimum deviation, algebraic sum, \(k\)-sum and \(k\)-max objectives, \((k_1, k_2)-max, (k_1, k_2)\)-balanced and several types of trimmed-mean objectives. We give a survey on existing algorithms and propose a general model for those problems not yet treated in literature. The latter is based on the solution of resource constrained shortest path problems with equality constraints which can be solved in pseudo-polynomial time if the given graph is acyclic and the number of resources is fixed. In our setting, however, these problems can be solved in strongly polynomial time. Combining this with known results on \(k\)-sum and \(k\)-max optimization for general combinatorial problems, we obtain strongly polynomial algorithms for a variety of path problems on acyclic and general digraphs.