## Report in Wirtschaftsmathematik (WIMA Report)

### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (138) (entfernen)

#### Schlagworte

- Location Theory (7)
- integer programming (5)
- nonparametric regression (4)
- Approximation (3)
- Combinatorial optimization (3)
- Multicriteria Optimization (3)
- Multicriteria optimization (3)
- hub location (3)
- network flows (3)
- neural network (3)

1

Anhand des vom Gutachterausschuß der Stadt Kaiserlautern zur Verfügung gestellten Datenmaterials soll untersucht werden, welche Faktoren den Verkehrswert eines bebauten Grundstücks beeinflussen. Mit diesen Erkenntnissen soll eine möglichst einfache Formel ermittelt werden, die eine Schätzung für den Verkehrswert liefert, und die dabei die in der Vergangenheit erzielten Kaufpreise berücksichtigt. Für die Lösung dieser Aufgabe bietet sich das Verfahren der multiplen linearen Regression an. Auf die theoretischen Grundlagen soll hier nicht näher eingegangen werden, man findet sie in jedem Buch über mathematische Statistik, oder in [1]. Bei der Analyse der Daten wurde im großen und ganzen der Weg eingeschlagen, den Angelika Schwarz in [1] beschreibt. Ihre Ergebnisse lassen sich jedoch nicht direkt übertragen, da die dort betrachteten Grundstücke unbebaut waren. Da bei der statistischen Auswertung großer Datenmengen ein immenser Rechenaufwand anfällt, ist es unverzichtbar, professionelle statistische Software einzusetzen. Es stand das Programm S-Plus 2.0 (PC-Version für Windows) zur Verfügung. Sämtliche Berechnungen und alle Grafiken in diesem Bericht wurden in S-Plus erstellt.

161

We consider the problem to evacuate several regions due to river flooding, where sufficient time is given to plan ahead. To ensure a smooth evacuation procedure, our model includes the decision which regions to assign to which shelter, and when evacuation orders should be issued, such that roads do not become congested.
Due to uncertainty in weather forecast, several possible scenarios are simultaneously considered in a robust optimization framework. To solve the resulting integer program, we apply a Tabu search algorithm based on decomposing the problem into better tractable subproblems. Computational experiments on random instances and an instance based on Kulmbach, Germany, data show considerable improvement compared to an MIP solver provided with a strong starting solution.

5

Given a finite set of points in the plane and a forbidden region R, we want to find a point X not an element of int(R), such that the weighted sum to all given points is minimized. This location problem is a variant of the well-known Weber Problem, where we measure the distance by polyhedral gauges and allow each of the weights to be positive or negative. The unit ball of a polyhedral gauge may be any convex polyhedron containing the origin. This large class of distance functions allows very general (practical) settings - such as asymmetry - to be modeled. Each given point is allowed to have its own gauge and the forbidden region R enables us to include negative information in the model. Additionally the use of negative and positive weights allows to include the level of attraction or dislikeness of a new facility. Polynomial algorithms and structural properties for this global optimization problem (d.c. objective function and a non-convex feasible set) based on combinatorial and geometrical methods are presented.

126

We introduce a class of models for time series of counts which include INGARCH-type models as well as log linear models for conditionally Poisson distributed data. For those processes, we formulate simple conditions for stationarity and weak dependence with a geometric rate. The coupling argument used in the proof serves as a role model for a similar treatment of integer-valued time series models based on other types of thinning operations.

140

The shortest path problem in which the \((s,t)\)-paths \(P\) of a given digraph \(G =(V,E)\) are compared with respect to the sum of their edge costs is one of the best known problems in combinatorial optimization. The paper is concerned with a number of variations of this problem having different objective functions like bottleneck, balanced, minimum deviation, algebraic sum, \(k\)-sum and \(k\)-max objectives, \((k_1, k_2)-max, (k_1, k_2)\)-balanced and several types of trimmed-mean objectives. We give a survey on existing algorithms and propose a general model for those problems not yet treated in literature. The latter is based on the solution of resource constrained shortest path problems with equality constraints which can be solved in pseudo-polynomial time if the given graph is acyclic and the number of resources is fixed. In our setting, however, these problems can be solved in strongly polynomial time. Combining this with known results on \(k\)-sum and \(k\)-max optimization for general combinatorial problems, we obtain strongly polynomial algorithms for a variety of path problems on acyclic and general digraphs.

54

Value Preserving Strategies and a General Framework for Local Approaches to Optimal Portfolios
(1999)

We present some new general results on the existence and form of value preserving portfolio strategies in a general semimartingale setting. The concept of value preservation will be derived via a mean-variance argument. It will also be embedded into a framework for local approaches to the problem of portfolio optimisation.

128

Universal Shortest Paths
(2010)

We introduce the universal shortest path problem (Univ-SPP) which generalizes both - classical and new - shortest path problems. Starting with the definition of the even more general universal combinatorial optimization problem (Univ-COP), we show that a variety of objective functions for general combinatorial problems can be modeled if all feasible solutions have the same cardinality. Since this assumption is, in general, not satisfied when considering shortest paths, we give two alternative definitions for Univ-SPP, one based on a sequence of cardinality contrained subproblems, the other using an auxiliary construction to establish uniform length for all paths between source and sink. Both alternatives are shown to be (strongly) NP-hard and they can be formulated as quadratic integer or mixed integer linear programs. On graphs with specific assumptions on edge costs and path lengths, the second version of Univ-SPP can be solved as classical sum shortest path problem.

81

In this paper we consider the location of stops along the edges of an already existing public transportation network. This can be the introduction of bus stops along some given bus routes, or of railway stations along the tracks in a railway network. The positive effect of new stops is given by the better access of the potential customers to their closest station, while the increasement of travel time caused by the additional stopping activities of the trains leads to a negative effect. The goal is to cover all given demand points with a minimal amount of additional traveling time, where covering may be defined with respect to an arbitrary norm (or even a gauge). Unfortunately, this problem is NP-hard, even if only the Euclidean distance is used. In this paper, we give a reduction to a finite candidate set leading to a discrete set covering problem. Moreover, we identify network structures in which the coefficient matrix of the resulting set covering problem is totally unimodular, and use this result to derive efficient solution approaches. Various extensions of the problem are also discussed.

59

The balance space approach (introduced by Galperin in 1990) provides a new view on multicriteria optimization. Looking at deviations from global optimality of the different objectives, balance points and balance numbers are defined when either different or equal deviations for each objective are allowed. Apportioned balance numbers allow the specification of proportions among the deviations. Through this concept the decision maker can be involved in the decision process. In this paper we prove that the apportioned balance number can be formulated by a min-max operator. Furthermore we prove some relations between apportioned balance numbers and the balance set, and see the representation of balance numbers in the balance set. The main results are necessary and sufficient conditions for the balance set to be exhaustive, which means that by multiplying a vector of weights (proportions of deviation) with its corresponding apportioned balance number a balance point is attained. The results are used to formulate an interactive procedure for multicriteria optimization. All results are illustrated by examples.

137

In this paper we develop testing procedures for the detection of structural changes in nonlinear autoregressive processes. For the detection procedure we model the regression function by a single layer feedforward neural network. We show that CUSUM-type tests based on cumulative sums of estimated residuals, that have been intensively studied for linear regression, can be extended to this case. The limit distribution under the null hypothesis is obtained, which is needed to construct asymptotic tests. For a large class of alternatives it is shown that the tests have asymptotic power one. In this case, we obtain a consistent change-point estimator which is related to the test statistics. Power and size are further investigated in a small simulation study with a particular emphasis on situations where the model is misspecified, i.e. the data is not generated by a neural network but some other regression function. As illustration, an application on the Nile data set as well as S&P log-returns is given.