## Report in Wirtschaftsmathematik (WIMA Report)

### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (138) (entfernen)

#### Schlagworte

- Location Theory (7)
- integer programming (5)
- nonparametric regression (4)
- Approximation (3)
- Combinatorial optimization (3)
- Multicriteria Optimization (3)
- Multicriteria optimization (3)
- hub location (3)
- network flows (3)
- neural network (3)

128

Universal Shortest Paths
(2010)

We introduce the universal shortest path problem (Univ-SPP) which generalizes both - classical and new - shortest path problems. Starting with the definition of the even more general universal combinatorial optimization problem (Univ-COP), we show that a variety of objective functions for general combinatorial problems can be modeled if all feasible solutions have the same cardinality. Since this assumption is, in general, not satisfied when considering shortest paths, we give two alternative definitions for Univ-SPP, one based on a sequence of cardinality contrained subproblems, the other using an auxiliary construction to establish uniform length for all paths between source and sink. Both alternatives are shown to be (strongly) NP-hard and they can be formulated as quadratic integer or mixed integer linear programs. On graphs with specific assumptions on edge costs and path lengths, the second version of Univ-SPP can be solved as classical sum shortest path problem.

147

It is well known that the greedy algorithm solves matroid base problems for all linear cost functions and is, in fact, correct if and only if the underlying combinatorial structure of the problem is a matroid. Moreover, the algorithm can be applied to problems with sum, bottleneck, algebraic sum or \(k\)-sum objective functions.

140

The shortest path problem in which the \((s,t)\)-paths \(P\) of a given digraph \(G =(V,E)\) are compared with respect to the sum of their edge costs is one of the best known problems in combinatorial optimization. The paper is concerned with a number of variations of this problem having different objective functions like bottleneck, balanced, minimum deviation, algebraic sum, \(k\)-sum and \(k\)-max objectives, \((k_1, k_2)-max, (k_1, k_2)\)-balanced and several types of trimmed-mean objectives. We give a survey on existing algorithms and propose a general model for those problems not yet treated in literature. The latter is based on the solution of resource constrained shortest path problems with equality constraints which can be solved in pseudo-polynomial time if the given graph is acyclic and the number of resources is fixed. In our setting, however, these problems can be solved in strongly polynomial time. Combining this with known results on \(k\)-sum and \(k\)-max optimization for general combinatorial problems, we obtain strongly polynomial algorithms for a variety of path problems on acyclic and general digraphs.

40

Convex Operators in Vector Optimization: Directional Derivatives and the Cone of Decrease Directions
(1999)

The paper is devoted to the investigation of directional derivatives and the cone of decrease directions for convex operators on Banach spaces. We prove a condition for the existence of directional derivatives which does not assume regularity of the ordering cone K. This result is then used to prove that for continuous convex operators the cone of decrease directions can be represented in terms of the directional derivatices . Decrease directions are those for which the directional derivative lies in the negative interior of the ordering cone K. Finally, we show that the continuity of the convex operator can be replaced by its K-boundedness.

75

Abstract: Evacuation problems can be modeled as flow problems in dynamic networks. A dynamic network is defined by a directed graph G = (N,A) with sources, sinks and non-negative integral travel times and capacities for every arc (i,j) e A. The earliest arrival flow problem is to send a maximum amount of dynamic flow reaching the sink not only for the given time horizon T, but also for any time T' < T . This problem mimics the evacuation problem of public buildings where occupancies may not known. For the buildings where the number of occupancies is known and concentrated only in one source, the quickest flow model is used to find the minimum egress time. We propose in this paper a solution procedure for evacuation problems with a single source of the building where the occupancy number is either known or unknown. The possibility that the flow capacity may change due to the increasing of smoke density or fire obstructions can be mirrored in our model. The solution procedure looks iteratively for the shortest conditional augmenting path (SCAP) from source to sink and compute the time intervals in which flow reaches the sink via this path.

164

This paper presents a case study of duty rostering for physicians at a department of orthopedics and trauma surgery. We provide a detailed description of the rostering problem faced and present an integer programming model that has been used in practice for creating duty rosters at the department for more than a year. Using real world data, we compare the model output to a manually generated roster as used previously by the department and analyze the quality of the rosters generated by the model over a longer time span. Moreover, we demonstrate how unforeseen events such as absences of scheduled physicians are handled.

115

In this paper we develop a data-driven mixture of vector autoregressive models with exogenous components. The process is assumed to change regimes according to an underlying Markov process. In contrast to the hidden Markov setup, we allow the transition probabilities of the underlying Markov process to depend on past time series values and exogenous variables. Such processes have potential applications to modeling brain signals. For example, brain activity at time t (measured by electroencephalograms) will can be modeled as a function of both its past values as well as exogenous variables (such as visual or somatosensory stimuli). Furthermore, we establish stationarity, geometric ergodicity and the existence of moments for these processes under suitable conditions on the parameters of the model. Such properties are important for understanding the stability properties of the model as well as deriving the asymptotic behavior of various statistics and model parameter estimators.

146

In this paper we consider a multivariate switching model, with constant states means
and covariances. In this model, the switching mechanism between the basic states of
the observed time series is controlled by a hidden Markov chain. As illustration, under
Gaussian assumption on the innovations and some rather simple conditions, we prove
the consistency and asymptotic normality of the maximum likelihood estimates of the model parameters.

133

We consider a variant of a knapsack problem with a fixed cardinality constraint. There are three objective functions to be optimized: one real-valued and two integer-valued objectives. We show that this problem can be solved efficiently by a local search. The algorithm utilizes connectedness of a subset of feasible solutions and has optimal run-time.

36

In this survey we deal with the location of hyperplanes in n-dimensional normed spaces, i.e., we present all known results and a unifying approach to the so-called median hyperplane problem in Minkowski spaces. We describe how to find a hyperplane H minimizing the weighted sum f(H) of distances to a given, finite set of demand points. In robust statistics and operations research such an optimal hyperplane is called a median hyperplane.After summarizing the known results for the Euclidean and rectangular situation, we show that for all distance measures d derived from norms one of the hyperplanes minimizing f(H) is the affine hull of n of the demand points and, moreover, that each median hyperplane is a halving one (in a sense defined below) with respect to the geiven point set. Also an independence of norm result for finding optimal hyperplanes with fixed slope will be given. Furthermore we discuss how these geometric criteria can be used for algorithmical approaches to median hyperplanes, with an extra discussion for the case of polyhedral norms. And finally a characterizatio of all smooth norms by a sharpened incidence criterion for median hyperplanes is mentioned.