## Report in Wirtschaftsmathematik (WIMA Report)

### Filtern

#### Schlagworte

- Minkowski space (1)
- Optimierung (1)
- Standorttheorie (1)
- Verkehsplanung (1)
- center hyperplane (1)
- centrally symmetric polytope (1)
- common transversal (1)
- consecutive ones property (1)
- hyperplane transversal (1)
- location theory (1)

- 63
- Linear Facility Location in Three Dimensions - Models and Solution Methods (2000)
- We consider the problem of locating a line or a line segment in three- dimensional space, such that the sum of distances from the linear facility to a given set of points is minimized. An example is planning the drilling of a mine shaft, with access to ore deposits through horizontal tunnels connecting the deposits and the shaft. Various models of the problem are developed and analyzed, and effcient solution methods are given.

- 80
- Properties of 3-dimensional line location models (2002)
- We consider the problem of locating a line with respect to some existing facilities in 3-dimensional space, such that the sum of weighted distances between the line and the facilities is minimized. Measuring distance using the l_p norm is discussed, along with the special cases of Euclidean and rectangular norms. Heuristic solution procedures for finding a local minimum are outlined.

- 76
- Locating New Stops in a Railway Network (2001)
- Given a railway network together with information on the population and their use of the railway infrastructure, we are considering the e ffects of introducing new train stops in the existing railway network. One e ffect concerns the accessibility of the railway infrastructure to the population, measured in how far people live from their nearest train stop. The second effect we study is the change in travel time for the railway customers that is induced by new train stops. Based on these two models, we introduce two combinatorial optimization problems and give NP-hardness results for them. We suggest an algorithmic approach for the model based on travel time and give first experimental results.

- 6
- A Note on Center Problems with forbidden Polyhedra (1999)
- The problem of finding an optimal location X* minimizing the maximum Euclidean distance to existing facilities is well solved by e.g. the Elzinga-Hearn algorithm. In practical situations X* will however often not be feasible. We therefore suggest in this note a polynomial algorithm which will find an optimal location X^F in a feasible subset F of the plane R^2

- 47
- Hyperplane transversals of homothetical, centrally symmetric polytopes (1999)
- Let P c R^n, n >= 2, be a centrally symmetric, convex n-polytope with 2r vertices, and P be a family of m >= n + 1 homothetical copies of P. We show that a hyperplane transversal of all members of P (it it exists) can be found in O(rm) time.

- 27
- A geometric approach to global optimization (1999)
- In this paper we consider the problem of optimizing a piecewise-linear objective function over a non-convex domain. In particular we do not allow the solution to lie in the interior of a prespecified region R. We discuss the geometrical properties of this problems and present algorithms based on combinatorial arguments. In addition we show how we can construct quite complicated shaped sets R while maintaining the combinatorial properties.

- 97
- Stop Location Design in Public Transportation Networks: Covering and Accessibility Objectives (2006)
- In StopLoc we consider the location of new stops along the edges of an existing public transportation network. Examples of StopLoc include the location of bus stops along some given bus routes or of railway stations along the tracks in a railway system. In order to measure the ''convenience'' of the location decision for potential customers in given demand facilities, two objectives are proposed. In the first one, we give an upper bound on reaching a closest station from any of the demand facilities and minimize the number of stations. In the second objective, we fix the number of new stations and minimize the sum of the distances between demand facilities and stations. The resulting two problems CovStopLoc and AccessStopLoc are solved by a reduction to a classical set covering and a restricted location problem, respectively. We implement the general ideas in two different environments - the plane, where demand facilities are represented by coordinates and in networks, where they are nodes of a graph.

- 91
- Set Covering With Almost Consecutive Ones Property (2003)
- In this paper we consider set covering problems with a coefficient matrix almost having the consecutive ones property, i.e., in many rows of the coefficient matrix, the ones appear consecutively. If this property holds for all rows it is well known that the set covering problem can be solved efficiently. For our case of almost consecutive ones we present a reformulation exploiting the consecutive ones structure to develop bounds and a branching scheme. Our approach has been tested on real-world data as well as on theoretical problem instances.

- 3
- Locating Least-Distance Lines in the Plane (1999)
- In this paper we deal with locating a line in the plane. If d is a distance measure our objective is to find a straight line l which minimizes f(l) of g(l) (see the paper for the definition of these functions). We show that for all distance measures d derived from norms, one of the lines minimizing f(l) contains at least two of the existing facilities. For the center objective we always get an optimal line which is at maximum distance from at least three of the existing facilities. If all weights are equal, there is an optimal line which is parallel to one facet of the convex hull of the existing facilities.

- 32
- Solving restricted line location problems via a dual interpretation (1999)
- In line location problems the objective is to find a straight line which minimizes the sum of distances, or the maximum distance, respectively to a given set of existing facilities in the plane. These problems have well solved. In this paper we deal with restricted line location problems, i.e. we have given a set in the plane where the line is not allowed to pass through. With the help of a geometric duality we solve such problems for the vertical distance and then extend these results to block norms and some of them even to arbitrary norms. For all norms we give a finite candidate set for the optimal line.