In the Banach space co there exists a continuous function of bounded semivariation which does not correspond to a countably additive vector measure. This result is in contrast to the scalar case, and it has consequences for the characterization of scalar-type operators. Besides this negative result we introduce the notion of functions of unconditionally bounded variation which are exactly the generators of countably additive vector measures.

We show that the occupation measure on the path of a planar Brownian motion run for an arbitrary finite time intervalhas an average density of order three with respect to thegauge function t^2 log(1/t). This is a surprising resultas it seems to be the first instance where gauge functions other than t^s and average densities of order higher than two appear naturally. We also show that the average densityof order two fails to exist and prove that the density distributions, or lacunarity distributions, of order threeof the occupation measure of a planar Brownian motion are gamma distributions with parameter 2.