Preprints (rote Reihe) des Fachbereich Mathematik
292
Symmetry properties of average densities and tangent measure distributions of measures on the line
(1995)
Answering a question by Bedford and Fisher we show that for every Radon measure on the line with positive and finite lower and upper densities the one-sided average densities always agree with one half of the circular average densities at almost every point. We infer this result from a more general formula, which involves the notion of a tangent measure distribution introduced by Bandt and Graf. This formula shows that the tangent measure distributions are Palm distributions and define self-similar random measures in the sense of U. Zähle.