## Preprints (rote Reihe) des Fachbereich Mathematik

### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (49)
- Wissenschaftlicher Artikel (1)

#### Sprache

- Englisch (50) (entfernen)

#### Schlagworte

- 338
- Rank two Cohen-Macaulay modules over singularities of type ..... (2004)
- We describe, by matrix factoizations, all the rank two maximal Cohen-Macauly modules over singularities of type ......

- 334
- Hochschild- and Cyclic-Homology of LCNT-Spaces (2003)
- We define a class of topological spaces (LCNT-spaces) which come together with a nuclear Frechet algebra. Like the algebra of smooth functions on a manifold, this algebra carries the differential structure of the object. We compute the Hochschild homology of this object and show that it is isomorphic to the space of differential forms. This is a generalization of a result obtained by Alain Connes in the framework of smooth manifolds.

- 336
- Hyperquasivarieties (2003)
- We consider the notion of hyper-quasi-identities and hyperquasivarieties, as a common generalization of the concept of quasi-identity and quasivariety invented by A.I. Mal'cev, cf. [10], cf. [5] and hypervariety invented by the authors in [6].

- 332
- Functions preserving 2-series strict orders (2003)
- In recent years a considerable attention was paid to an investigation of finite orders relative to different properties of their isotone functions [2,3]. Strict order relations are defined as strict asymmetric and transitive binary relations. Some algebraic properties of strict orders were already studied in [6]. For the class K of so-called 2-series strict orders we describe the partially ordered set EndK of endomorphism monoids, ordered by inclusion. It is obtained that EndK possesses a least element and in most cases defines a Boolean algebra. Moreover, every 2-series strict order is determined by its n-ary isotone functions for some natural number n.

- 327
- An economic approach to discretization of nonstationary iterated Tikhonov method (2002)
- An adaptive discretization scheme of ill-posed problems is used for nonstationary iterated Tikhonov regularization. It is shown that for some classes of operator equations of the first kind the proposed algorithm is more efficient compared with standard methods.

- 330
- Morozov's Discrepancy Principle Under General Source Conditions (2002)
- In this paper we study linear ill-posed problems Ax = y in a Hilbert space setting where instead of exact data y noisy data y^delta are given satisfying |y - y^delta| <= delta with known noise level delta. Regularized approximations are obtained by a general regularization scheme where the regularization parameter is chosen from Morozov's discrepancy principle. Assuming the unknown solution belongs to some general source set M we prove that the regularized approximation provides order optimal error bounds on the set M. Our results cover the special case of finitely smoothing operators A and extends recent results for infinitely smoothing operators.

- 331
- Isotone mappings of levelled strict orders (2002)
- Strict order relations are defined as strict asymmetric and transitive binary relations. For classes of so-called levelled strict orders it is analyzed, under which conditions the endomorphism monoids of two relations coincide; in particular the case of direct sums of strict antichains is studied. Further, it is shown that these orders differ in their sets of binary order preserving functions.

- 322
- The finite-section approximation for ill-posed integral equations on the half-line (2001)
- Integral equations on the half of line are commonly approximated by the finite-section approximation, in which the infinite upper limit is replaced by apositie number called finite-section parameter. In this paper we consider the finite-section approximation for first kind intgral equations which are typically ill-posed and call for regularization. For some classes of such equations corresponding to inverse problems from optics and astronomy we indicate the finite-section parameters that allows to apply standard regularization techniques. Two discretization schemes for the finite-section equations ar also proposed and their efficiency is studied.