## Preprints (rote Reihe) des Fachbereich Mathematik

### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Bericht (78)
- Preprint (53)
- Wissenschaftlicher Artikel (1)

#### Volltext vorhanden

- ja (132) (entfernen)

#### Schlagworte

- 276
- A comparison method for expectations of a class of continuous polytope functionals (1996)
- Let \(a_1,\dots,a_n\) be independent random points in \(\mathbb{R}^d\) spherically symmetrically but not necessarily identically distributed. Let \(X\) be the random polytope generated as the convex hull of \(a_1,\dots,a_n\) and for any \(k\)-dimensional subspace \(L\subseteq \mathbb{R}^d\) let \(Vol_L(X) :=\lambda_k(L\cap X)\) be the volume of \(X\cap L\) with respect to the \(k\)-dimensional Lebesgue measure \(\lambda_k, k=1,\dots,d\). Furthermore, let \(F^{(i)}\)(t):= \(\bf{Pr}\) \(\)(\(\Vert a_i \|_2\leq t\)), \(t \in \mathbb{R}^+_0\) , be the radial distribution function of \(a_i\). We prove that the expectation functional \(\Phi_L\)(\(F^{(1)}, F^{(2)},\dots, F^{(n)})\) := \(E(Vol_L(X)\)) is strictly decreasing in each argument, i.e. if \(F^{(i)}(t) \le G^{(i)}(t)t\), \(t \in {R}^+_0\), but \(F^{(i)} \not\equiv G^{(i)}\), we show \(\Phi\) \((\dots, F^{(i)}, \dots\)) > \(\Phi(\dots,G^{(i)},\dots\)). The proof is clone in the more general framework of continuous and \(f\)- additive polytope functionals.

- 203
- A Construction of Q-Gorenstein Smoothings of Index two (1991)
- The notion of Q-Gorenstein smoothings has been introduced by Kollar. ([KoJ], 6.2.3). This notion is essential for formulating Kollar's conjectures on smoothing components for rational surface singularities. He conjectures, loosely speaking, that every smoothing of a rational surface singularity can be obtained by blowing down a deformation of a partial resolution, this partial resolution having the property (among others) that the singularities occuring on it all have qG-smoothings. (For more details and precise statements see [Ko], ch. 6.). It is therefore of interest to construct singularities having qG-smoothings.

- 216
- A generalization of proth's theorem (1992)
- We present a generalization of Proth's theorem for testing certain large integers for primality. The use of Gauß sums leads to a much simpler approach to these primality criteria as compared to the earlier tests. The running time of the algorithms is bounded by a polynomial in the length of the input string. The applicability of our algorithms is linked to certain diophantine approximations of \(l\)-adic roots of unity.

- 266
- A Note on Approximation Algorithms for the Multicriteria \(\Delta\)-TSP (1995)
- The Tree and Christofides heuristic are weil known 1- and \(\frac{1} {2}\)- approximate algorithms for the \(\Delta\)-TSP. In this note their performance for the multicriteria case is described, depending on the norm in \(\mathbb{R}^Q\) in case of \(Q\) criteria.

- 229
- A Quintic Hypersurface in \(P^4\) with 130 Nodes (1992)
- In this note we describe a quintic hypersurface in \(P^4\) with 130 ordinary double points. This hypersurface is in some sense analogous to the Segre Cubic and the Burkbardt Quartic.

- 283
- A regularization Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems (1996)
- The first part of this paper studies a Levenberg-Marquardt scheme for nonlinear inverse problems where the corresponding Lagrange (or regularization) parameter is chosen from an inexact Newton strategy. While the convergence analysis of standard implementations based on trust region strategies always requires the invertibility of the Fréchet derivative of the nonlinear operator at the exact solution, the new Levenberg-Marquardt scheme is suitable for ill-posed problems as long as the Taylor remainder is of second order in the interpolating metric between the range and dornain topologies. Estimates of this type are established in the second part of the paper for ill-posed parameter identification problems arising in inverse groundwater hydrology. Both, transient and steady state data are investigated. Finally, the numerical performance of the new Levenberg-Marquardt scheme is studied and compared to a usual implementation on a realistic but synthetic 2D model problem from the engineering literature.

- 223
- A Simple Integral Representation for the Second Moments of Additive Random Variables on Stochastic Polyhedra (1992)
- Let \(a_1, i:=1,\dots,m\), be an i.i.d. sequence taking values in \(\mathbb{R}^n\), whose convex hull is interpreted as a stochastic polyhedron \(P\). For a special class of random variables, which decompose additively relative to their boundary simplices, eg. the volume of \(P\), simple integral representations of its first two moments are given in case of rotationally symmetric distributions in order to facilitate estimations of variances or to quantify large deviations from the mean.

- 245
- A Unified Asymptotic Prohabilistic Analysis of Polyhedral Functionals (1993)
- Let \(A\):= {\(a_i\mid i= 1,\dots,m\)} be an i.i.d. random sample in (\mathbb{R}^n\), which we consider a random polyhedron, either as the convex hull of the \(a_i\) or as the intersection of halfspaces {\(x \mid a ^T_i x\leq 1\)}. We introduce a class of polyhedral functionals we will call "additive-type functionals", which covers a number of polyhedral functionals discussed in different mathematical fields, where the emphasis in our contribution will be on those, which arise in linear optimization theory. The class of additive-type functionals is a suitable setting in order to unify and to simplify the asymptotic probabilistic analysis of first and second moments of polyhedral functionals. We provide examples of asymptotic results on expectations and on variances.

- 240
- Algebraizations with minimal class group (1993)

- 327
- An economic approach to discretization of nonstationary iterated Tikhonov method (2002)
- An adaptive discretization scheme of ill-posed problems is used for nonstationary iterated Tikhonov regularization. It is shown that for some classes of operator equations of the first kind the proposed algorithm is more efficient compared with standard methods.