## Preprints (rote Reihe) des Fachbereich Mathematik

### Refine

#### Document Type

- Report (78) (remove)

289

We compare different notions of differentiability of a measure along a vector field on a locally convex space. We consider in the \(L^2\)-space of a differentiable measure the analoga of the classical concepts of gradient, divergence and Laplacian (which coincides with the Ornstein-Uhlenbeck
operator in the Gaussian case). We use these operators for the extension of the basic results of Malliavin and Stroock on the smoothness of finite dimensional image measures under certain nonsmooth mappings to the case of non-Gaussian measures. The proof of this extension is quite direct and does not use any Chaos-decomposition. Finally, the role of this Laplacian in the
procedure of quantization of anharmonic oscillators is discussed.

276

Let \(a_1,\dots,a_n\) be independent random points in \(\mathbb{R}^d\) spherically symmetrically but not necessarily identically distributed. Let \(X\) be the random polytope generated as the convex hull of \(a_1,\dots,a_n\) and for any \(k\)-dimensional subspace \(L\subseteq \mathbb{R}^d\) let \(Vol_L(X) :=\lambda_k(L\cap X)\) be the volume of \(X\cap L\) with respect to the \(k\)-dimensional Lebesgue measure \(\lambda_k, k=1,\dots,d\). Furthermore, let \(F^{(i)}\)(t):= \(\bf{Pr}\) \(\)(\(\Vert a_i \|_2\leq t\)),
\(t \in \mathbb{R}^+_0\) , be the radial distribution function of \(a_i\). We prove that the expectation
functional \(\Phi_L\)(\(F^{(1)}, F^{(2)},\dots, F^{(n)})\) := \(E(Vol_L(X)\)) is strictly decreasing in
each argument, i.e. if \(F^{(i)}(t) \le G^{(i)}(t)t\), \(t \in {R}^+_0\), but \(F^{(i)} \not\equiv G^{(i)}\), we show \(\Phi\) \((\dots, F^{(i)}, \dots\)) > \(\Phi(\dots,G^{(i)},\dots\)). The proof is clone in the more general framework
of continuous and \(f\)- additive polytope functionals.

284

A polynomial function \(f : L \to L\) of a lattice \(\mathcal{L}\) = \((L; \land, \lor)\) is generated by the identity function id \(id(x)=x\) and the constant functions \(c_a (x) = a\) (for every \(x \in L\)), \(a \in L\) by applying the operations \(\land, \lor\) finitely often. Every polynomial function in one or also in several variables is a monotone function of \(\mathcal{L}\).
If every monotone function of \(\mathcal{L}\)is a polynomial function then \(\mathcal{L}\) is called orderpolynomially complete. In this paper we give a new characterization of finite order-polynomially lattices. We consider doubly irreducible monotone functions and point out their relation to tolerances, especially to central relations. We introduce chain-compatible lattices
and show that they have a non-trivial congruence if they contain a finite interval and an infinite chain. The consequences are two new results. A modular lattice \(\mathcal{L}\) with a finite interval is order-polynomially complete if and only if \(\mathcal{L}\) is finite projective geometry. If \(\mathcal{L}\) is simple modular lattice of infinite length then every nontrivial interval is of infinite length and has the same cardinality as any other nontrivial interval of \(\mathcal{L}\). In the last sections we show the descriptive power of polynomial functions of
lattices and present several applications in geometry.

282

Let \(a_1,\dots,a_m\) be independent random points in \(\mathbb{R}^n\) that are independent and identically distributed spherically symmetrical in \(\mathbb{R}^n\). Moreover, let \(X\) be the random polytope generated as the convex hull of \(a_1,\dots,a_m\) and let \(L_k\) be an arbitrary \(k\)-dimensional
subspace of \(\mathbb{R}^n\) with \(2\le k\le n-1\). Let \(X_k\) be the orthogonal projection image of \(X\) in \(L_k\). We call those vertices of \(X\), whose projection images in \(L_k\) are vertices of \(X_k\)as well shadow vertices of \(X\) with respect to the subspace \(L_k\) . We derive a distribution independent sharp upper bound for the expected number of shadow vertices of \(X\) in \(L_k\).

279

It is shown that Tikhonov regularization for ill- posed operator equation
\(Kx = y\) using a possibly unbounded regularizing operator \(L\) yields an orderoptimal algorithm with respect to certain stability set when the regularization parameter is chosen according to the Morozov's discrepancy principle. A more realistic error estimate is derived when the operators \(K\) and \(L\) are related to a Hilbert scale in a suitable manner. The result includes known error estimates for ordininary Tikhonov regularization and also the estimates available under the Hilbert scale approach.

285

On derived varieties
(1996)

Derived varieties play an essential role in the theory of hyperidentities. In [11] we have shown that derivation diagrams are a useful tool in the analysis of derived algebras and varieties. In this paper this tool is developed further in order to use it for algebraic constructions of derived algebras. Especially the operator \(S\) of subalgebras, \(H\) of homomorphic irnages and \(P\) of direct products are studied. Derived groupoids from the groupoid \(N or (x,y)\) = \(x'\wedge y'\) and from abelian groups are considered. The latter class serves as an example for fluid algebras and varieties. A fluid variety \(V\) has no derived variety as a subvariety and is introduced as a counterpart for solid varieties. Finally we use a property of the commutator of derived algebras in order to show that solvability and nilpotency are preserved under derivation.

274

This paper investigates the convergence of the Lanczos method for computing the smallest eigenpair of a selfadjoint elliptic differential operator via inverse iteration (without shifts).
Superlinear convergence rates are established, and their sharpness is investigated for a simple model problem. These results are illustrated numerically for a more difficult problem.

275

271

The paper deals with parallel-machine and open-shop scheduling problems with preemptions and arbitrary nondecreasing objective function. An approach to describe
the solution region for these problems and to reduce them to minimization problems on polytopes is proposed. Properties of the solution regions for certain problems are investigated. lt is proved that open-shop problems with unit processing times are equivalent to certain parallel-machine problems, where preemption is allowed at arbitrary time. A polynomial algorithm is presented transforming a schedule of one type into a schedule of the other type.

283

The first part of this paper studies a Levenberg-Marquardt scheme for nonlinear inverse problems where the corresponding Lagrange (or regularization) parameter is chosen from an inexact Newton strategy. While the convergence analysis of standard implementations based on trust region strategies always requires the invertibility of the Fréchet derivative of the nonlinear operator at the exact solution, the new Levenberg-Marquardt scheme is suitable for ill-posed problems as long as the Taylor remainder is of second order in the interpolating metric between the range and dornain
topologies. Estimates of this type are established in the second part of the paper for ill-posed parameter identification problems arising in inverse groundwater hydrology. Both, transient and steady state data are investigated. Finally, the numerical performance of the new Levenberg-Marquardt scheme is
studied and compared to a usual implementation on a realistic but synthetic 2D model problem from the engineering literature.

277

A convergence rate is established for nonstationary iterated Tikhonov regularization, applied to ill-posed problems involving closed, densely defined linear operators, under general conditions on the iteration parameters. lt is also shown that an order-optimal accuracy is attained when a certain a posteriori stopping rule is used to determine the iteration number.

280

This paper develops truncated Newton methods as an appropriate tool for nonlinear inverse problems which are ill-posed in the sense of Hadamard. In each Newton step an approximate solution for the linearized problem is computed with the conjugate gradient method as an inner iteration. The conjugate gradient iteration is terminated when the residual has been reduced to a prescribed percentage. Under certain assumptions on the nonlinear operator it is shown that the algorithm converges and is stable if the discrepancy principle is used to terminate the outer iteration.
These assumptions are fulfilled , e.g., for the inverse problem of identifying the diffusion coefficient in a parabolic differential equation from distributed data.

262

Let \(a_1,\dots,a_m\) be i.i .d. vectors uniform on the unit sphere in \(\mathbb{R}^n\), \(m\ge n\ge3\) and let \(X\):= {\(x \in \mathbb{R}^n \mid a ^T_i x\leq 1\)} be the random polyhedron generated by. Furthermore, for linearly independent vectors \(u\), \(\bar u\) in \(\mathbb{R}^n\), let \(S_{u, \bar u}(X)\) be the number of shadow vertices of \(X\) in \(span (u, \bar u\)). The paper provides an asymptotic expansion of the expectation value \(E (S_{u, \bar u})\) for fixed \(n\) and \(m\to\infty\). The first terms of the expansion are given explicitly. Our investigation of \(E (S_{u, \bar u})\) is closely connected to Borgwardt's probabilistic analysis of the shadow vertex algorithm - a parametric variant of the simplex algorithm. We obtain an improved asymptotic upper bound for the number of pivot steps required by the shadow vertex algorithm for uniformly on the sphere distributed data.

265

In multiple criteria optimization an important research topic is the topological structure of the set \( X_e \) of efficient solutions. Of major interest is the connectedness of \( X_e \), since it would allow the determination of \( X_e \) without considering non-efficient solutions in the
process. We review general results on the subject,including the connectedness result for efficient solutions in multiple criteria linear programming. This result can be used to derive a definition of connectedness for discrete optimization problems. We present a counterexample to a previously stated result in this area, namely that the set of efficient solutions of the shortest path problem is connected. We will also show that connectedness does not hold for another important problem in discrete multiple criteria optimization: the spanning tree problem.

268

In this paper we will introduce the concept of lexicographic max-ordering solutions for multicriteria combinatorial optimization problems. Section 1 provides the basic notions of
multicriteria combinatorial optimization and the definition of lexicographic max-ordering solutions. In Section 2 we will show that lexicographic max-ordering solutions are pareto optimal as well as max-ordering optimal solutions. Furthermore lexicographic max-ordering solutions can be used to characterize the set of pareto solutions. Further properties of lexicographic max-ordering solutions are given. Section 3 will be devoted to algorithms. We give a polynomial time algorithm for the two criteria case where one criterion is a sum and one is a bottleneck objective function, provided that the one criterion sum problem is solvable in polynomial time. For bottleneck functions an algorithm for the general case of Q criteria is presented.

267

In this paper we investigate two optimization problems for matroids with multiple objective functions, namely finding the pareto set and the max-ordering problem which conists in finding a basis such that the largest objective value is minimal. We prove that the decision versions of both problems are NP-complete. A solution procedure for the max-ordering problem is presented and a result on the relation of the solution sets of the two problems is given. The main results are a characterization of pareto bases by a basis exchange property and finally a connectivity result for proper pareto solutions.

266

250

Let (\(a_i)_{i\in \bf{N}}\) be a sequence of identically and independently distributed random vectors drawn from the \(d\)-dimensional unit ball \(B^d\)and let \(X_n\):= convhull \((a_1,\dots,a_n\)) be the random polytope generated by \((a_1,\dots\,a_n)\). Furthermore, let \(\Delta (X_n)\) : = (Vol \(B^d\) \ \(X_n\)) be the deviation of the polytope's volume from the volume of the ball. For uniformly distributed \(a_i\) and \(d\ge2\), we prove that tbe limiting distribution of \(\frac{\Delta (X_n)} {E(\Delta (X_n))}\) for \(n\to\infty\) satisfies a 0-1-law. Especially, we provide precise information about the asymptotic behaviour of the variance of \(\Delta (X_n\)). We deliver analogous results for spherically symmetric distributions in \(B^d\) with regularly varying tail.

254

246

Max ordering (MO) optimization is introduced as tool for modelling production
planning with unknown lot sizes and in scenario modelling. In MO optimization a feasible solution set \(X\) and, for each \(x\in X, Q\) individual objective functions \(f_1(x),\dots,f_Q(x)\) are given. The max ordering objective
\(g(x):=max\) {\(f_1(x),\dots,f_Q(x)\)} is then minimized over all \(x\in X\).
The paper discusses complexity results and describes exact and approximative
algorithms for the case where \(X\) is the solution set of combinatorial
optimization problems and network flow problems, respectively.

245

Let \(A\):= {\(a_i\mid i= 1,\dots,m\)} be an i.i.d. random sample in (\mathbb{R}^n\), which we consider a random polyhedron, either as the convex hull of the \(a_i\) or as the intersection of halfspaces {\(x \mid a ^T_i x\leq 1\)}. We introduce a class of polyhedral functionals we will call "additive-type functionals", which covers a number of polyhedral functionals discussed in different mathematical fields, where the emphasis in our contribution will be on those, which arise in linear optimization theory. The class of additive-type functionals is a suitable setting in order to unify and to simplify the asymptotic probabilistic analysis of first and second moments of polyhedral functionals. We provide examples of asymptotic results on expectations and on variances.

248

The article provides an asymptotic probabilistic analysis of the variance of the number of pivot steps required by phase II of the "shadow vertex algorithm" - a parametric variant of the simplex algorithm, which has been proposed by Borgwardt [1] . The analysis is done for data which satisfy a rotationally
invariant distribution law in the \(n\)-dimensional unit ball.

238

Despite their very good empirical performance most of the simplex algorithm's variants require exponentially many pivot steps in terms of the problem dimensions of the given linear programming problem (LPP) in worst-case situtation. The first to explain the large gap between practical experience and the disappointing worst-case was Borgwardt (1982a,b), who could prove polynomiality on tbe average for a certain variant of the algorithm-the " Schatteneckenalgorithmus (shadow vertex algorithm)" - using a stochastic problem simulation.

242

Efficient algorithms and structural results are presented for median
problems with 2 new facilities including the classical 2-Median problem,
the 2-Median problem with forbidden regions and bicriterial 2-Median
problems. This is the first paper dealing with multi-facility multiobjective location problems. The time complexity of all presented algorithms is O(MlogM), where M is the number of existing facilities.

243

Given Q different objective functions, three types of single-facility problems
are considered: Lexicographic, pareto and max ordering problems. After discussing the interrelation between the problem types, a complete characterization of lexicographic locations and some instances of pareto and max ordering locations is given. The characterizations result in efficient solution algorithms for finding these locations. The paper relies heavily on the theory of restricted locations developed by the same authors, and can be further extended, for instance, to multifacility problems with several objectives. The proposed approach is more general than previously published results on multicriteria planar location problems and is particulary suited for modelling real-world problems.

239

We investigate two versions of multiple objective minimum spanning tree
problems defined on a network with vectorial weights. First, we want to minimize the maximum of Q linear objective functions taken over the set of all spanning trees (max linear spanning tree problem ML-ST). Secondly, we look for efficient spanning trees (multi criteria spanning tree problem MC-ST). Problem ML-ST is shown to be NP-complete. An exact algorithm which is based on ranking is presented. The procedure can also be used as an approximation scheme. For solving the bicriterion MC-ST, which in the worst case may have an exponential number of efficient trees, a two-phase procedure is presented. Based on the computation of extremal efficient spanning trees we use neighbourhood search to determine a sequence of solutions with the property that the distance
between two consecutive solutions is less than a given accuracy.

236

Es wird anhand von Beispielen, an denen der Autor in der Vergangenheit gearbeitet hat, gezeigt, wie man Modelle der exakten Naturwissenschaften auf wirtschaftliche Probleme
anwenden kann. Insbesondere wird diskutiert, wo Grenzen dieser Übertragbarkeit liegen. Die Arbeit ist eine Zusammenfassung eines Vortrags, der im SS 1992 im Rahmen des Studium Generale an der Universität Kaiserslautern gehalten wurde.

219

A Remark on Primes of the Form \(2^{3n}a + 2^{2n}b+2^nc+1\). Necessary and sufficient conditions for the numbers in the title to be prime are given. The tests are well suited for practical purposes.

218

232

We show that the different module structures of GF(\(q^m\)) arising from the intermediate fields of GF(\(q^m\))and GF(q) can be studied simultaneously with the help of some basic properties of cyclotomic polynomials. We use this ideas to give a detailed and constructive proof of the most difficult part of a Theorem of D. Blessenohl and K. Johnsen (1986), i.e., the existence of elements v in GF(\(q^m\)) over GF(q) which generate normal bases over any intermediate field of GF(\(q^m\)) and GF(q), provided that m is a prime power. Such elements are called completely free in GF(\(q^m\)) over GF(q). We develop a recursive formula for the number of completely free elements in GF(\(q^m\)) over GF(q) in the case where m is a prime power. Some of the results can be generalized to finite cyclic Galois extensions
over arbitrary fields.

223

Let \(a_1, i:=1,\dots,m\), be an i.i.d. sequence taking values in \(\mathbb{R}^n\), whose convex hull is interpreted as a stochastic polyhedron \(P\). For a special class of random variables, which decompose additively relative to their boundary simplices, eg. the volume of \(P\), simple integral representations of its first two moments are given in case of rotationally symmetric distributions in order to facilitate estimations of variances or to quantify large deviations from the mean.

231

We are concerned with a parameter choice strategy for the Tikhonov regularization \((\tilde{A}+\alpha I)\tilde{x}\) = T* \(\tilde{y}\)+ w where \(\tilde{A}\) is a (not necessarily selfadjoint) approximation of T*T and T*\(\tilde y\)+ w is a perturbed form of the (not exactly computed) term T*y. We give conditions for convergence and optimal convergence rates.

233

Let \(a_i i:= 1,\dots,m.\) be an i.i.d. sequence taking values in \(\mathbb{R}^n\). Whose convex hull is interpreted as a stochastic polyhedron \(P\). For a special class of random variables which decompose additively relative to their boundary simplices, eg. the volume of \(P\), integral representations of their first two moments are given which lead to asymptotic estimations of variances for special "additive variables" known from stochastic approximation theory in case of rotationally symmetric distributions.