## Preprints (rote Reihe) des Fachbereich Mathematik

### Refine

#### Keywords

- Brownian motion (2) (remove)

296

We show that the occupation measure on the path of a planar Brownian motion run for an arbitrary finite time intervalhas an average density of order three with respect to thegauge function t^2 log(1/t). This is a surprising resultas it seems to be the first instance where gauge functions other than t^s and average densities of order higher than two appear naturally. We also show that the average densityof order two fails to exist and prove that the density distributions, or lacunarity distributions, of order threeof the occupation measure of a planar Brownian motion are gamma distributions with parameter 2.

303

We show that the intersection local times \(\mu_p\) on the intersection of \(p\) independent planar Brownian paths have an average density of order three with respect to the gauge function \(r^2\pi\cdot (log(1/r)/\pi)^p\), more precisely, almost surely, \[ \lim\limits_{\varepsilon\downarrow 0} \frac{1}{log |log\ \varepsilon|} \int_\varepsilon^{1/e} \frac{\mu_p(B(x,r))}{r^2\pi\cdot (log(1/r)/\pi)^p} \frac{dr}{r\ log (1/r)} = 2^p \mbox{ at $\mu_p$-almost every $x$.} \] We also show that the lacunarity distributions of \(\mu_p\), at \(\mu_p\)-almost every point, is given as the distribution of the product of \(p\) independent gamma(2)-distributed random variables. The main tools of the proof are a Palm distribution associated with the intersection local time and an approximation theorem of Le Gall.