## Preprints (rote Reihe) des Fachbereich Mathematik

### Refine

#### Document Type

- Preprint (3) (remove)

322

Integral equations on the half of line are commonly approximated by the finite-section approximation, in which the infinite upper limit is replaced by apositie number called finite-section parameter. In this paper we consider the finite-section approximation for first kind intgral equations which are typically ill-posed and call for regularization. For some classes of such equations corresponding to inverse problems from optics and astronomy we indicate the finite-section parameters that allows to apply standard regularization techniques. Two discretization schemes for the finite-section equations ar also proposed and their efficiency is studied.

308

In this paper we discuss a special class of regularization methods for solving the satellite gravity gradiometry problem in a spherical framework based on band-limited spherical regularization wavelets. Considering such wavelets as a reesult of a combination of some regularization methods with Galerkin discretization based on the spherical harmonic system we obtain the error estimates of regularized solutions as well as the estimates for regularization parameters and parameters of band-limitation.