## Preprints (rote Reihe) des Fachbereich Mathematik

### Refine

#### Year of publication

#### Has Fulltext

- yes (132) (remove)

#### Keywords

- tangent measure distributions (3)
- Palm distributions (2)
- average densities (2)
- average density (2)
- occupation measure (2)
- order-two densities (2)
- Algebraic Geometry (1)
- Brownian motion (1)
- Cantor sets (1)
- Complexity (1)
- Complexity and performance of numerical algorithms (1)
- Dirichlet series (1)
- Function of bounded variation (1)
- Hochschild homology (1)
- Hochschild-Homologie (1)
- Homologietheorie (1)
- Ill-Posed Problems (1)
- Improperly posed problems (1)
- Integral transform (1)
- Kallianpur-Robbins law (1)
- Linear Integral Equations (1)
- Local completeness (1)
- Moduli Spaces (1)
- Quasi-identities (1)
- Rectifiability (1)
- Riemann-Siegel formula (1)
- Sheaves (1)
- Stratifaltigkeiten (1)
- Translation planes (1)
- Verschlüsselung (1)
- Vigenere (1)
- Zyklische Homologie (1)
- algebraic geometry (1)
- cusp forms (1)
- cyclic homology (1)
- density distribution (1)
- fractals (1)
- geometric measure theory (1)
- geometry of measures (1)
- higher order (1)
- hyper-quasi-identities (1)
- hyperquasivarieties (1)
- invariant theory (1)
- lacunarity distribution (1)
- limit models (1)
- locally maximal clone (1)
- log averaging methods (1)
- logarithmic averages (1)
- moduli spaces (1)
- non-commutative geometry (1)
- order-three density (1)
- order-two density (1)
- ovoids (1)
- planar Brownian motion (1)
- preservation of relations (1)
- quadratic forms (1)
- quasivarieties (1)
- ratio ergodic theorem (1)
- singular spaces (1)
- singuläre Räume (1)
- strong theorems (1)

207

Moduli for singularities
(1991)

The aim of this article is to give a survey on recent results about moduli spaces for curve singularities and for modules over the local ring of a fixed curve singularity. We emphasize especially the general concept which lies behind these constructions.
Therefore, the article might be useful to the reader who wishes to have the leading ideas and the main steps of the proofs explained without going into all the details. We also calculate explicit examples (for singularities and for modules) which illustrate
the general theorems.

336

Hyperquasivarieties
(2003)

328

In this short note we prove some general results on semi-stable sheaves on P_2 and P_3 with arbitrary linear Hilbert polynomial. Using Beilinson's spectral sequence, we compute free resolutions for this class of semi-stable sheaves and deduce that the smooth moduli spaces M_{r m + s}(P_2) and M_{r m + r - s}(P_2) are birationally equivalent if r and s are coprime.

228

Weighted k-cardinality trees
(1992)

We consider the k -CARD TREE problem, i.e., the problem of finding in a given undirected graph G a subtree with k edges, having minimum weight. Applications of this problem arise in oil-field leasing and facility layout. While the general problem is shown to be strongly NP hard, it can be solved in polynomial time if G is itself a tree. We give an integer programming formulation of k-CARD TREE, and an efficient exact separation routine for a set of generalized subtour elimination constraints. The polyhedral structure of the convex huLl of the integer solutions is studied.

334

We define a class of topological spaces (LCNT-spaces) which come together with a nuclear Frechet algebra. Like the algebra of smooth functions on a manifold, this algebra carries the differential structure of the object. We compute the Hochschild homology of this object and show that it is isomorphic to the space of differential forms. This is a generalization of a result obtained by Alain Connes in the framework of smooth manifolds.

265

In multiple criteria optimization an important research topic is the topological structure of the set \( X_e \) of efficient solutions. Of major interest is the connectedness of \( X_e \), since it would allow the determination of \( X_e \) without considering non-efficient solutions in the
process. We review general results on the subject,including the connectedness result for efficient solutions in multiple criteria linear programming. This result can be used to derive a definition of connectedness for discrete optimization problems. We present a counterexample to a previously stated result in this area, namely that the set of efficient solutions of the shortest path problem is connected. We will also show that connectedness does not hold for another important problem in discrete multiple criteria optimization: the spanning tree problem.

266

268

In this paper we will introduce the concept of lexicographic max-ordering solutions for multicriteria combinatorial optimization problems. Section 1 provides the basic notions of
multicriteria combinatorial optimization and the definition of lexicographic max-ordering solutions. In Section 2 we will show that lexicographic max-ordering solutions are pareto optimal as well as max-ordering optimal solutions. Furthermore lexicographic max-ordering solutions can be used to characterize the set of pareto solutions. Further properties of lexicographic max-ordering solutions are given. Section 3 will be devoted to algorithms. We give a polynomial time algorithm for the two criteria case where one criterion is a sum and one is a bottleneck objective function, provided that the one criterion sum problem is solvable in polynomial time. For bottleneck functions an algorithm for the general case of Q criteria is presented.

267

In this paper we investigate two optimization problems for matroids with multiple objective functions, namely finding the pareto set and the max-ordering problem which conists in finding a basis such that the largest objective value is minimal. We prove that the decision versions of both problems are NP-complete. A solution procedure for the max-ordering problem is presented and a result on the relation of the solution sets of the two problems is given. The main results are a characterization of pareto bases by a basis exchange property and finally a connectivity result for proper pareto solutions.

301

We extend the methods of geometric invariant theory to actions of non reductive groups in the case of homomorphisms between decomposable sheaves whose automorphism groups are non recutive. Given a linearization of the natural actionof the group Aut(E)xAut(F) on Hom(E,F), a homomorphism iscalled stable if its orbit with respect to the unipotentradical is contained in the stable locus with respect to thenatural reductive subgroup of the automorphism group. Weencounter effective numerical conditions for a linearizationsuch that the corresponding open set of semi-stable homomorphismsadmits a good and projective quotient in the sense of geometricinvariant theory, and that this quotient is in additiona geometric quotient on the set of stable homomorphisms.

305

In this paper we show that for each prime p=7 there exists a translation plane of order p^2 of Mason-Ostrom type. These planes occur as 6-dimensional ovoids being projections of the 8-dimensional binary ovoids of Conway, Kleidman and Wilson. In order to verify the existence of such projections we prove certain properties of two particular quadratic forms using classical methods form number theory.

271

The paper deals with parallel-machine and open-shop scheduling problems with preemptions and arbitrary nondecreasing objective function. An approach to describe
the solution region for these problems and to reduce them to minimization problems on polytopes is proposed. Properties of the solution regions for certain problems are investigated. lt is proved that open-shop problems with unit processing times are equivalent to certain parallel-machine problems, where preemption is allowed at arbitrary time. A polynomial algorithm is presented transforming a schedule of one type into a schedule of the other type.

338

306

In this paper we study the space-time asymptotic behavior of the solutions and derivatives to th incompressible Navier-Stokes equations. Using moment estimates we obtain that strong solutions to the Navier-Stokes equations which decay in \(L^2\) at the rate of \(||u(t)||_2 \leq C(t+1)^{-\mu}\) will have the following pointwise space-time decay \[|D^{\alpha}u(x,t)| \leq C_{k,m} \frac{1}{(t+1)^{ \rho_o}(1+|x|^2)^{k/2}} \]
where \( \rho_o = (1-2k/n)( m/2 + \mu) + 3/4(1-2k/n)\), and \(|a |= m\). The dimension n is \(2 \leq n \leq 5\) and \(0\leq k\leq n\) and \(\mu \geq n/4\)