## Preprints (rote Reihe) des Fachbereich Mathematik

### Refine

#### Document Type

- Report (78) (remove)

289

We compare different notions of differentiability of a measure along a vector field on a locally convex space. We consider in the \(L^2\)-space of a differentiable measure the analoga of the classical concepts of gradient, divergence and Laplacian (which coincides with the Ornstein-Uhlenbeck
operator in the Gaussian case). We use these operators for the extension of the basic results of Malliavin and Stroock on the smoothness of finite dimensional image measures under certain nonsmooth mappings to the case of non-Gaussian measures. The proof of this extension is quite direct and does not use any Chaos-decomposition. Finally, the role of this Laplacian in the
procedure of quantization of anharmonic oscillators is discussed.

284

A polynomial function \(f : L \to L\) of a lattice \(\mathcal{L}\) = \((L; \land, \lor)\) is generated by the identity function id \(id(x)=x\) and the constant functions \(c_a (x) = a\) (for every \(x \in L\)), \(a \in L\) by applying the operations \(\land, \lor\) finitely often. Every polynomial function in one or also in several variables is a monotone function of \(\mathcal{L}\).
If every monotone function of \(\mathcal{L}\)is a polynomial function then \(\mathcal{L}\) is called orderpolynomially complete. In this paper we give a new characterization of finite order-polynomially lattices. We consider doubly irreducible monotone functions and point out their relation to tolerances, especially to central relations. We introduce chain-compatible lattices
and show that they have a non-trivial congruence if they contain a finite interval and an infinite chain. The consequences are two new results. A modular lattice \(\mathcal{L}\) with a finite interval is order-polynomially complete if and only if \(\mathcal{L}\) is finite projective geometry. If \(\mathcal{L}\) is simple modular lattice of infinite length then every nontrivial interval is of infinite length and has the same cardinality as any other nontrivial interval of \(\mathcal{L}\). In the last sections we show the descriptive power of polynomial functions of
lattices and present several applications in geometry.

274

This paper investigates the convergence of the Lanczos method for computing the smallest eigenpair of a selfadjoint elliptic differential operator via inverse iteration (without shifts).
Superlinear convergence rates are established, and their sharpness is investigated for a simple model problem. These results are illustrated numerically for a more difficult problem.

275

283

The first part of this paper studies a Levenberg-Marquardt scheme for nonlinear inverse problems where the corresponding Lagrange (or regularization) parameter is chosen from an inexact Newton strategy. While the convergence analysis of standard implementations based on trust region strategies always requires the invertibility of the Fréchet derivative of the nonlinear operator at the exact solution, the new Levenberg-Marquardt scheme is suitable for ill-posed problems as long as the Taylor remainder is of second order in the interpolating metric between the range and dornain
topologies. Estimates of this type are established in the second part of the paper for ill-posed parameter identification problems arising in inverse groundwater hydrology. Both, transient and steady state data are investigated. Finally, the numerical performance of the new Levenberg-Marquardt scheme is
studied and compared to a usual implementation on a realistic but synthetic 2D model problem from the engineering literature.

277

A convergence rate is established for nonstationary iterated Tikhonov regularization, applied to ill-posed problems involving closed, densely defined linear operators, under general conditions on the iteration parameters. lt is also shown that an order-optimal accuracy is attained when a certain a posteriori stopping rule is used to determine the iteration number.

280

This paper develops truncated Newton methods as an appropriate tool for nonlinear inverse problems which are ill-posed in the sense of Hadamard. In each Newton step an approximate solution for the linearized problem is computed with the conjugate gradient method as an inner iteration. The conjugate gradient iteration is terminated when the residual has been reduced to a prescribed percentage. Under certain assumptions on the nonlinear operator it is shown that the algorithm converges and is stable if the discrepancy principle is used to terminate the outer iteration.
These assumptions are fulfilled , e.g., for the inverse problem of identifying the diffusion coefficient in a parabolic differential equation from distributed data.

276

Let \(a_1,\dots,a_n\) be independent random points in \(\mathbb{R}^d\) spherically symmetrically but not necessarily identically distributed. Let \(X\) be the random polytope generated as the convex hull of \(a_1,\dots,a_n\) and for any \(k\)-dimensional subspace \(L\subseteq \mathbb{R}^d\) let \(Vol_L(X) :=\lambda_k(L\cap X)\) be the volume of \(X\cap L\) with respect to the \(k\)-dimensional Lebesgue measure \(\lambda_k, k=1,\dots,d\). Furthermore, let \(F^{(i)}\)(t):= \(\bf{Pr}\) \(\)(\(\Vert a_i \|_2\leq t\)),
\(t \in \mathbb{R}^+_0\) , be the radial distribution function of \(a_i\). We prove that the expectation
functional \(\Phi_L\)(\(F^{(1)}, F^{(2)},\dots, F^{(n)})\) := \(E(Vol_L(X)\)) is strictly decreasing in
each argument, i.e. if \(F^{(i)}(t) \le G^{(i)}(t)t\), \(t \in {R}^+_0\), but \(F^{(i)} \not\equiv G^{(i)}\), we show \(\Phi\) \((\dots, F^{(i)}, \dots\)) > \(\Phi(\dots,G^{(i)},\dots\)). The proof is clone in the more general framework
of continuous and \(f\)- additive polytope functionals.