## Preprints (rote Reihe) des Fachbereich Mathematik

215

229

220

Hyperidentities
(1992)

The concept of a free algebra plays an essential role in universal algebra and in computer science. Manipulation of terms, calculations and the derivation of identities are performed in free algebras. Word problems, normal forms, system of reductions, unification and finite bases of identities are topics in algebra and logic as well as in computer science. A very fruitful point of view is to consider structural properties of free algebras. A.I. Malcev initiated a thorough research of the congruences of free algebras. Henceforth congruence permutable, congruence distributive and congruence modular varieties are
intensively studied. A lot of Malcev type theorems are connected to the congruence lattice of free algebras. Here we consider free algebras as semigroups of compositions of terms and more specific as clones of terms. The properties of these semigroups and clones are adequately described by hyperidentities. Naturally a lot of theorems of "semigroup" or "clone" type can be derived. This topic of research is still in its beginning and therefore a lot öf concepts and results cannot be presented in a final and polished form. Furthermore a lot of problems and questions are open which are of importance for the further development of the theory of hyperidentities.

224

Jede Wissenschaft entfaltet sich in einem Spannungsverhältnis zu ihren Nachbardisziplinen. In diesem Beitrag wird insbesondere das Disziplinenpaar Mathematik-Philosophie in den Blick genommen. Dies geschieht entlang der Leitfrage, ob und gegebenenfalls wie Philosophie auf die Entwicklung und Ausformung der Mathematik Einfluß genommen hat. Dazu wird nach philosophischen Spuren in der Mathematik gefragt, wobei jene historischen Konstellationen bevorzugt betrachtet werden, die eine grundlegende Änderung im Mathematikverständnis erbracht haben. Deshalb gilt das Hauptinteresse dieser Untersuchung dem Verhältnis von Philosophie und Mathematik in der klassischen Antike, bei Kant und in der Gegenwart.

231

We are concerned with a parameter choice strategy for the Tikhonov regularization \((\tilde{A}+\alpha I)\tilde{x}\) = T* \(\tilde{y}\)+ w where \(\tilde{A}\) is a (not necessarily selfadjoint) approximation of T*T and T*\(\tilde y\)+ w is a perturbed form of the (not exactly computed) term T*y. We give conditions for convergence and optimal convergence rates.

223

Let \(a_1, i:=1,\dots,m\), be an i.i.d. sequence taking values in \(\mathbb{R}^n\), whose convex hull is interpreted as a stochastic polyhedron \(P\). For a special class of random variables, which decompose additively relative to their boundary simplices, eg. the volume of \(P\), simple integral representations of its first two moments are given in case of rotationally symmetric distributions in order to facilitate estimations of variances or to quantify large deviations from the mean.

233

Let \(a_i i:= 1,\dots,m.\) be an i.i.d. sequence taking values in \(\mathbb{R}^n\). Whose convex hull is interpreted as a stochastic polyhedron \(P\). For a special class of random variables which decompose additively relative to their boundary simplices, eg. the volume of \(P\), integral representations of their first two moments are given which lead to asymptotic estimations of variances for special "additive variables" known from stochastic approximation theory in case of rotationally symmetric distributions.