## Berichte des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik (ITWM Report)

- 120
- On upscaling heat conductivity for a class of industrial problems (2007)
- Calculating effective heat conductivity for a class of industrial problems is discussed. The considered composite materials are glass and metal foams, fibrous materials, and the like, used in isolation or in advanced heat exchangers. These materials are characterized by a very complex internal structure, by low volume fraction of the higher conductive material (glass or metal), and by a large volume fraction of the air. The homogenization theory (when applicable), allows to calculate the effective heat conductivity of composite media by postprocessing the solution of special cell problems for representative elementary volumes (REV). Different formulations of such cell problems are considered and compared here. Furthermore, the size of the REV is studied numerically for some typical materials. Fast algorithms for solving the cell problems for this class of problems, are presented and discussed.

- 132
- An efficient approach for upscaling properties of composite materials with high contrast of coefficients (2007)
- An efficient approach for calculating the effective heat conductivity for a class of industrial composite materials, such as metal foams, fibrous glass materials, and the like, is discussed. These materials, used in insulation or in advanced heat exchangers, are characterized by a low volume fraction of the highly conductive material (glass or metal) having a complex, network-like structure and by a large volume fraction of the insulator (air). We assume that the composite materials have constant macroscopic thermal conductivity tensors, which in principle can be obtained by standard up-scaling techniques, that use the concept of representative elementary volumes (REV), i.e. the effective heat conductivities of composite media can be computed by post-processing the solutions of some special cell problems for REVs. We propose, theoretically justify, and numerically study an efficient approach for calculating the effective conductivity for media for which the ratio of low and high conductivities satisfies 1. In this case one essentially only needs to solve the heat equation in the region occupied by the highly conductive media. For a class of problems we show, that under certain conditions on the microscale geometry, the proposed approach produces an upscaled conductivity that is O() close to the exact upscaled permeability. A number of numerical experiments are presented in order to illustrate the accuracy and the limitations of the proposed method. Applicability of the presented approach to upscaling other similar problems, e.g. flow in fractured porous media, is also discussed.

- 142
- A Graph-Laplacian approach for calculating the effective thermal conductivity of complicated fiber geometries (2008)
- Abstract. An efficient approach to the numerical upscaling of thermal conductivities of fibrous media, e.g. insulation materials, is considered. First, standard cell problems for a second order elliptic equation are formulated for a proper piece of random fibrous structure, following homogenization theory. Next, a graph formed by the fibers is considered, and a second order elliptic equation with suitable boundary conditions is solved on this graph only. Replacing the boundary value problem for the full cell with an auxiliary problem with special boundary conditions on a connected subdomain of highly conductive material is justified in a previous work of the authors. A discretization on the graph is presented here, and error estimates are provided. The efficient implementation of the algorithm is discussed. A number of numerical experiments is presented in order to illustrate the performance of the proposed method.