## Berichte des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik (ITWM Report)

### Filtern

#### Schlagworte

- 114
- On parallel numerical algorithms for simulating industrial filtration problems (2007)
- The performance of oil filters used in the automotive industry can be significantly improved, especially when computer simulation is an essential component of the design process. In this paper, we consider parallel numerical algorithms for solving mathematical models describing the process of filtration, filtering out solid particles from liquid oil. The Navier-Stokes-Brinkmann system of equations is used to describe the laminar flow of incompressible isothermal oil. The space discretization in the complicated filter geometry is based on the finite-volume method. Special care is taken for an accurate approximation of velocity and pressure on the interface between the fluid and the porous media. The time discretization used here is a proper modification of the fractional time step discretization (cf. Chorin scheme) of the Navier-Stokes equations, where the Brinkmann term is considered at both, prediction and correction substeps. A data decomposition method is used to develop a parallel algorithm, where the domain is distributed among processors by using a structured reference grid. The MPI library is used to implement the data communication part of the algorithm. A theoretical model is proposed for the estimation of the complexity of the given parallel algorithm and a scalability analysis is done on the basis of this model. Results of computational experiments are presented, and the accuracy and efficiency of the parallel algorithm is tested on real industrial geometries.

- 63
- On Modelling and Simulation of Different Regimes for Liquid Polymer Moulding (2004)
- In this paper we consider numerical algorithms for solving a system of nonlinear PDEs arising in modeling of liquid polymer injection. We investigate the particular case when a porous preform is located within the mould, so that the liquid polymer flows through a porous medium during the filling stage. The nonlinearity of the governing system of PDEs is due to the non-Newtonian behavior of the polymer, as well as due to the moving free boundary. The latter is related to the penetration front and a Stefan type problem is formulated to account for it. A finite-volume method is used to approximate the given differential problem. Results of numerical experiments are presented. We also solve an inverse problem and present algorithms for the determination of the absolute preform permeability coefficient in the case when the velocity of the penetration front is known from measurements. In both cases (direct and inverse problems) we emphasize on the specifics related to the non-Newtonian behavior of the polymer. For completeness, we discuss also the Newtonian case. Results of some experimental measurements are presented and discussed.

- 52
- On a Multigrid Adaptive Refinement Solver for Saturated Non-Newtonian Flow in Porous Media (2003)
- On a Multigrid Adaptive Refinement Solver for Saturated Non-Newtonian Flow in Porous Media A multigrid adaptive refinement algorithm for non-Newtonian flow in porous media is presented. The saturated flow of a non-Newtonian fluid is described by the continuity equation and the generalized Darcy law. The resulting second order nonlinear elliptic equation is discretized by a finite volume method on a cell-centered grid. A nonlinear full-multigrid, full-approximation-storage algorithm is implemented. As a smoother, a single grid solver based on Picard linearization and Gauss-Seidel relaxation is used. Further, a local refinement multigrid algorithm on a composite grid is developed. A residual based error indicator is used in the adaptive refinement criterion. A special implementation approach is used, which allows us to perform unstructured local refinement in conjunction with the finite volume discretization. Several results from numerical experiments are presented in order to examine the performance of the solver.

- 70
- On Efficent Simulation of Non-Newtonian Flow in Saturated Porous Media with a Multigrid Adaptive Refinement Solver (2005)
- Flow of non-Newtonian fluid in saturated porous media can be described by the continuity equation and the generalized Darcy law. Efficient solution of the resulting second order nonlinear elliptic equation is discussed here. The equation is discretized by a finite volume method on a cell-centered grid. Local adaptive refinement of the grid is introduced in order to reduce the number of unknowns. A special implementation approach is used, which allows us to perform unstructured local refinement in conjunction with the finite volume discretization. Two residual based error indicators are exploited in the adaptive refinement criterion. Second order accurate discretization of the fluxes on the interfaces between refined and non-refined subdomains, as well as on the boundaries with Dirichlet boundary condition, are presented here, as an essential part of the accurate and efficient algorithm. A nonlinear full approximation storage multigrid algorithm is developed especially for the above described composite (coarse plus locally refined) grid approach. In particular, second order approximation of the fluxes around interfaces is a result of a quadratic approximation of slave nodes in the multigrid - adaptive refinement (MG-AR) algorithm. Results from numerical solution of various academic and practice-induced problems are presented and the performance of the solver is discussed.

- 69
- On convergence of certain finite difference discretizations for 1D poroelasticity interface problems (2004)
- Finite difference discretizations of 1D poroelasticity equations with discontinuous coefficients are analyzed. A recently suggested FD discretization of poroelasticity equations with constant coefficients on staggered grid, [5], is used as a basis. A careful treatment of the interfaces leads to harmonic averaging of the discontinuous coefficients. Here, convergence for the pressure and for the displacement is proven in certain norms for the scheme with harmonic averaging (HA). Order of convergence 1.5 is proven for arbitrary located interface, and second order convergence is proven for the case when the interface coincides with a grid node. Furthermore, following the ideas from [3], modified HA discretization are suggested for particular cases. The velocity and the stress are approximated with second order on the interface in this case. It is shown that for wide class of problems, the modified discretization provides better accuracy. Second order convergence for modified scheme is proven for the case when the interface coincides with a displacement grid node. Numerical experiments are presented in order to illustrate our considerations.

- 121
- On two-level preconditioners for flow in porous media (2007)
- Two-level domain decomposition preconditioner for 3D flows in anisotropic highly heterogeneous porous media is presented. Accurate finite volume discretization based on multipoint flux approximation (MPFA) for 3D pressure equation is employed to account for the jump discontinuities of full permeability tensors. DD/MG type preconditioner for above mentioned problem is developed. Coarse scale operator is obtained from a homogenization type procedure. The influence of the overlapping as well as the influence of the smoother and cell problem formulation is studied. Results from numerical experiments are presented and discussed.

- 132
- An efficient approach for upscaling properties of composite materials with high contrast of coefficients (2007)
- An efficient approach for calculating the effective heat conductivity for a class of industrial composite materials, such as metal foams, fibrous glass materials, and the like, is discussed. These materials, used in insulation or in advanced heat exchangers, are characterized by a low volume fraction of the highly conductive material (glass or metal) having a complex, network-like structure and by a large volume fraction of the insulator (air). We assume that the composite materials have constant macroscopic thermal conductivity tensors, which in principle can be obtained by standard up-scaling techniques, that use the concept of representative elementary volumes (REV), i.e. the effective heat conductivities of composite media can be computed by post-processing the solutions of some special cell problems for REVs. We propose, theoretically justify, and numerically study an efficient approach for calculating the effective conductivity for media for which the ratio of low and high conductivities satisfies 1. In this case one essentially only needs to solve the heat equation in the region occupied by the highly conductive media. For a class of problems we show, that under certain conditions on the microscale geometry, the proposed approach produces an upscaled conductivity that is O() close to the exact upscaled permeability. A number of numerical experiments are presented in order to illustrate the accuracy and the limitations of the proposed method. Applicability of the presented approach to upscaling other similar problems, e.g. flow in fractured porous media, is also discussed.

- 66
- On numerical solution of 1-D poroelasticity equations in a multilayered domain (2004)
- In soil mechanics assumption of only vertical subsidence is often invoked and this leads to the one-dimensional model of poroelasticity. The classical model of linear poroelasticity is obtained by Biot [1], detailed derivation can be found e.g., in [2]. This model is applicable also to modelling certain processes in geomechanics, hydrogeology, petroleum engineering (see, e.g., [3, 8], in biomechanics (e.g., [9, 10]), in filtration (e.g., filter cake formation, see [15, 16, 17]), in paper manufacturing (e.g., [11, 12]), in printing (e.g., [13]), etc. Finite element and finite difference methods were applied by many authors for numerical solution of the Biot system of PDEs, see e.g. [3, 4, 5] and references therein. However, as it is wellknown, the standard FEM and FDM methods are subject to numerical instabilities at the first time steps. To avoid this, discretization on staggered grid was suggested in [4, 5]. A single layer deformable porous medium was considered there. This paper can be viewed as extension of [4, 5] to the case of multilayered deformable porous media. A finite volume discretization to the interface problem for the classical one-dimensional Biot model of consolidation process is applied here. Following assumptions are supposed to be valid: each of the porous layers is composed of incompressible solid matrix, it is homogeneous and isotropic. Furthermore, one of two following assumptions is valid: porous medium is not completely saturated and ﬂuid is incompressible or porous medium is completely saturated and fluid is slightly compressible. The reminder of the paper is organised as follows. Next section presents the mathematical model. Third section is devoted to the dicsretization of the continuous problem. Fourth section contains the results from the numerical experiments.

- 189
- On a numerical subgrid upscaling algorithm for Stokes-Brinkman equations (2010)
- This paper discusses a numerical subgrid resolution approach for solving the Stokes-Brinkman system of equations, which is describing coupled ow in plain and in highly porous media. Various scientic and industrial problems are described by this system, and often the geometry and/or the permeability vary on several scales. A particular target is the process of oil ltration. In many complicated lters, the lter medium or the lter element geometry are too ne to be resolved by a feasible computational grid. The subgrid approach presented in the paper is aimed at describing how these ne details are accounted for by solving auxiliary problems in appropriately chosen grid cells on a relatively coarse computational grid. This is done via a systematic and a careful procedure of modifying and updating the coecients of the Stokes-Brinkman system in chosen cells. This numerical subgrid approach is motivated from one side from homogenization theory, from which we borrow the formulations for the so called cell problem, and from the other side from the numerical upscaling approaches, such as Multiscale Finite Volume, Multiscale Finite Element, etc. Results on the algorithm's eciency, both in terms of computational time and memory usage, are presented. Comparison with solutions on full ne grid (when possible) are presented in order to evaluate the accuracy. Advantages and limitations of the considered subgrid approach are discussed.