## Berichte der Arbeitsgruppe Technomathematik (AGTM Report)

### Filtern

#### Erscheinungsjahr

- 1993 (14) (entfernen)

#### Schlagworte

- Low-discrepancy sequences (1)
- Monte Carlo method (1)
- Van Neumann-Kakutani transformation (1)
- discrete measure (1)
- distribution (1)
- low discrepancy (1)
- particle method (1)

- 99
- Exact Solutions of Discrete Kinetic Models and Stationary Problems for the Plane Broadwell Model (1993)

- 98
- Generalized Weighted Spline Approximation on the Sphere (1993)
- Spline functions that interpolate data given on the sphere are developed in a weighted Sobolev space setting. The flexibility of the weights makes possible the choice of the approximating function in a way which emphasizes attributes desirable for the particular application area. Examples show that certain choices of the weight sequences yield known methods. A pointwise convergence theorem containing explicit constants yields a useable error bound.

- 88
- Tensor Spherical Harmonics and Tensor Spherical Splines (1993)
- In this paper, we deal with the problem of spherical interpolation of discretely given data of tensorial type. To this end, spherical tensor fields are investigated and a decomposition formula is described. Tensor spherical harmonics are introduced as eigenfunctions of a tensorial analogon to the Beltrami operator and discussed in detail. Based on these preliminaries, a spline interpolation process is described and error estimates are presented. Furthermore, some relations between the spline basis functions and the theory of radial basis functions are developed.

- 97
- Nonorthogonal Expansions on the Sphere (1993)
- Discrete families of functions with the property that every function in a certain space can be represented by its formal Fourier series expansion are developed on the sphere. A Fourier series type expansion is obviously true if the family is an orthonormal basis of a Hilbert space, but it also can hold in situations where the family is not orthogonal and is overcomplete. Furthermore, all functions in our approach are axisymmetric (depending only on the spherical distance) so that they can be used adequately in (rotation) invariant pseudodifferential equations on the frames (ii) Gauss- Weierstrass frames, and (iii) frames consisting of locally supported kernel functions. Abel-Poisson frames form families of harmonic functions and provide us with powerful approximation tools in potential theory. Gauss-Weierstrass frames are intimately related to the diffusion equation on the sphere and play an important role in multiscale descriptions of image processing on the sphere. The third class enables us to discuss spherical Fourier expansions by means of axisymmetric finite elements.

- 92
- An Adaptive Wavelet Galerkin Algorithm for one and two Dimensional Flame Computations (1993)
- This paper is concerned with the development of a self-adaptive spatial descretization for PDEs using a wavelet basis. A Petrov-Galerkin method [LPT91] is used to reduce the determination of the unknown at the new time step to the computation of scalar products. These have to be discretized in an appropriate way. We investigate this point in detail and devise an algorithm that has linear operation count with respect to the number of unknowns. It is tested with spline wavelets and Meyer wavelets retaining the latter for their better localisation at finite precision. The algorithm is then applied to the one dimensional thermodiffusive equations. We show that the adaption strategy merits to be modified in order to take into account the particular and very strong nonlinearity of this problem. Finally, a supplementary Fourier discretization permits the computation of two dimensional flame fronts.

- 89
- Construction of Particlesets to Simulate Rarefied Gases (1993)
- In this paper a new method is introduced to construct asymptotically f-distributed sequences of points in the IR^d. The algorithm is based on a transformation proposed by E. Hlawka and R. Mück. For the numerical tests a new procedure to evaluate the f-discrepancy in two dimensions is proposed.

- 90
- Domain Decomposition: Linking Kinetic and Aerodynamic Descriptions (1993)
- We discuss how kinetic and aerodynamic descriptions of a gas can be matched at some prescribed boundary. The boundary (matching) conditions arise from requirement that the relevant moments (p,u,...) of the particle density function be continuous at the boundary, and from the requirement that the closure relation, by which the aerodynamic equations (holding on one side of the boundary) arise from the kinetic equation (holding on the other side), be satisfied at the boundary. We do a case study involving the Knudsen gas equation on one side and a system involving the Burgers equation on the other side in section 2, and a discussion for the coupling of the full Boltzmann equation with the compressible Navier-Stokes equations in section 3.

- 96
- Modelling and Numerical Simulation of Collisions (1993)
- In these lectures we will mainly treat a billard game. Our particles will be hard spheres. Not always: We will also touch cases, where particles have interior energies due to rotation or vibration, which they exchange in a collision, and we will talk about chemical reactions happening during a collision. But many essential aspects occur already in the billard case which will be therefore paradigmatic. I do not know enough about semiconductors to handle collisions there - the Boltzmann case is certainly different but may give some idea even for the other cases.

- 94
- 3D Eddy-Current Computation Using Krylov Subspace Methods (1993)
- This paper considers the numerical solution of a transmission boundary-value problem for the time-harmonic Maxwell equations with the help of a special finite volume discretization. Applying this technique to several three-dimensional test problems, we obtain large, sparse, complex linear systems, which are solved by using BiCG, CGS, BiCGSTAB resp., GMRES. We combine these methods with suitably chosen preconditioning matrices and compare the speed of convergence.