## Berichte der Arbeitsgruppe Technomathematik (AGTM Report)

- 246
- Maximum Entropy Moment Systems and Galilean Invariance (2001)
- In this article, we investigate the maximum entropy moment closure in gas dynamics. We show that the usual choice of polynomial weight functions may lead to hyperbolic systems with an unpleasant state space: equilibrium states are boundary points with possibly singular fluxes. In order to avoid singularities, the necessary arises to find weight functions which growing sub-quadratically at infinity. Unfortunately, this requirement leads to a conflict with Galilean invariance of the moment systems because we can show that rotational and translational invariant, finite dimensional function spaces necessarily consist of polynomials.

- 244
- A Hybrid Simulation Method for Radivative Transfer Equations (2001)
- We consider heat transfer processes where radiation in a large number of frequency bands plays a dominant role.

- 243
- Rigorous Navier-Stokes Limit of the Lattice Boltzmann Equation (2001)
- Here we riqorously investigate the diffusive limit of a velocity-discrete Boltzmann equation which is used in the lattice Boltzmann method to construct approximate solutions of the incompressible Navier-Stokes equation.

- 242
- Do Finite Volume Methods Need a Mesh? (2001)
- In this article, finite volume discretizations of hyperbolic conservation laws are considered, where the usual triangulation is replaced of unity on the computational domain.

- 241
- A limiter based on kinetic theory (2001)

- 229
- On the approximation of kinetic equations by moment systems (2000)
- The aim of this article is to show that moment approximations of kinetic equations based on a Maximum Entropy approach can suffer from severe drawbacks if the kinetic velocity space is unbounded. As example, we study the Fokker Planck equation where explicit expressions for the moments of solutions to Riemann problems can be derived. The quality of the closure relation obtained from the Maximum Entropy approach as well as the Hermite/Grad approach is studied in the case of five moments. It turns out that the Maximum Entropy closure is even singular in equilibrium states while the Hermite/Grad closure behaves reasonably. In particular, the admissible moments may lead to arbitrary large speeds of propagation, even for initial data arbitrary close to global eqilibrium.

- 226
- Consistency analysis of mesh-free methods for conservation laws (2000)
- Based on general partitions of unity and standard numerical flux functions, a class of mesh-free methods for conservation laws is derived. A Lax-Wendroff type consistency analysis is carried out for the general case of moving partition functions. The analysis leads to a set of conditions which are checked for the finite volume particle method FVPM. As a by-product, classical finite volume schemes are recovered in the approach for special choices of the partition of unity.

- 220
- Exponentially exact hyperbolic systems (2000)
- Starting with general hyperbolic systems of conservation laws, a special sub - class is extracted in which classical solutions can be expressed in terms of a linear transport equation. A characterizing property of this sub - class which contains, for example, all linear systems and non - linear scalar equations, is the existence of so called exponentially exact entropies.

- 218
- A new perspective on kinetic schemes (1999)
- Compared to standard numerical methods for hyperbolic systems of conservation laws, Kinetic Schemes model propagation of information by particles instead of waves. In this article, the wave and the particle concept are shown to be closely related. Moreover, a general approach to the construction of Kinetic Schemes for hyperbolic conservation laws is given which summarizes several approaches discussed by other authors. The approach also demonstrates why Kinetic Schemes are particularly well suited for scalar conservation laws and why extensions to general systems are less natural.