## Berichte der Arbeitsgruppe Technomathematik (AGTM Report)

- 119
- Domain decomposition for kinetic problems with strongly contrasted Knudsen numbers (1994)
- A nonequilibrium situation governed by kinetic equations with strongly contrasted Knudsen numbers in different subdomains is discussed. We consider a domain decomposition problem for Boltzmann- and Euler equations, establish the correct coupling conditions and prove the validity of the obtained coupled solution . Moreover numerical examples comparing different types of coupling conditions are presented.

- 241
- A limiter based on kinetic theory (2001)

- 231
- Uniform Stability of a Finite Difference Scheme for Transport Equations in Diffusive Regimes (2000)
- An asymptotic preserving numerical scheme (with respect to diffusion scalings) for a linear transport equation is investigated. The scheme is adopted from a class of recently developped schemes. Stability is proven uniformly in the mean free path under a CFL type condition turning into a parabolic CFL condition in the diffusion limit.

- 212
- Discretizations for the Incompressible Navier-Stokes Equations based on the Lattice Boltzmann Method (1999)
- A discrete velocity model with spatial and velocity discretization based on a lattice Boltzmann method is considered in the low Mach number limit. A uniform numerical scheme for this model is investigated. In the limit, the scheme reduces to a finite difference scheme for the incompressible Navier-Stokes equation which is a projection method with a second order spatial discretization on a regular grid. The discretization is analyzed and the method is compared to Chorin's original spatial discretization. Numerical results supporting the analytical statements are presented.

- 199
- Transition from Kinetic Theory to Macroscopic Fluid Equations: A Problem fo Domain Decomposition and a Source for New Algorithms (1999)
- In the paper we discuss the transition from kinetic theory to macroscopic fluid equations, where the macroscopic equations are defined as aymptotic limits of a kinetic equation. This relation can be used to derive computationally efficient domain decomposition schemes for the simulaion of rarefied gas flows close to the continuum limit. Moreover, we present some basic ideas for the derivation of kinetic induced numerical schemes for macroscopic equations, namely kinetic schemes for general conservation laws as well as Lattice-Boltzmann methods for the incompressible Navier-Stokes equations.

- 190
- A kinetic model for vehicular traffic: Existence of stationary solutions (1998)
- In this paper the kinetic model for vehicular traffic developed in [3,4] is considered and theoretical results for the space homogeneous kinetic equation are presented. Existence and uniqueness results for the time dependent equation are stated. An investigation of the stationary equation leads to a boundary value problem for an ordinary differential equation. Existence of the solution and some properties are proved. A numerical investigation of the stationary equation is included.

- 189
- An adaptive domain decomposition procedure for Boltzmann and Euler equations (1998)
- In this paper we present a domain decomposition approach for the coupling of Boltzmann and Euler equations. Particle methods are used for both equations. This leads to a simple implementation of the coupling procedure and to natural interface conditions between the two domains. Adaptive time and space discretizations and a direct coupling procedure leads to considerable gains in CPU time compared to a solution of the full Boltzmann equation. Several test cases involving a large range of Knudsen numbers are numerically investigated.

- 187
- A Numerical Method for Kinetic Semiconductor Equations in the Drift Diffusion limit (1997)
- An asymptotic-induced scheme for kinetic semiconductor equations with the diffusion scaling is developed. The scheme is based on the asymptotic analysis of the kinetic semiconductor equation. It works uniformly for all ranges of mean free paths. The velocity discretization is done using quadrature points equivalent to a moment expansion method. Numerical results for different physical situations are presented.

- 175
- An Asymptotic-Induced Scheme for Nonstationary Transport Equations in the Diffusive Limit (1997)
- An asymptotic-induced scheme for nonstationary transport equations with thediffusion scaling is developed. The scheme works uniformly for all ranges ofmean free paths. It is based on the asymptotic analysis of the diffusion limit ofthe transport equation. A theoretical investigation of the behaviour of thescheme in the diffusion limit is given and an approximation property is proven.Moreover, numerical results for different physical situations are shown and atheuniform convergence of the scheme is established numerically.

- 168
- Particle Methods for Evolution Equations (1996)