## Berichte der Arbeitsgruppe Technomathematik (AGTM Report)

- 163
- Orthogonal and non-orthogonal multiresolution analysis, scale discrete and exact fully discrete wavelet transform on the sphere (1996)
- Based on a new definition of delation a scale discrete version of spherical multiresolution is described, starting from a scale discrete wavelet transform on the sphere. Depending on the type of application, different families of wavelets are chosen. In particular, spherical Shannon wavelets are constructed that form an orthogonal multiresolution analysis. Finally fully discrete wavelet approximation is discussed in case of band-limited wavelets.

- 161
- Gradiometry - an Inverse Problem in Modern Satellite Geodesy (1996)
- Satellite gradiometry and its instrumentation is an ultra-sensitive detection technique of the space gravitational gradient (i.e. the Hesse tensor of the gravitational potential). Gradeometry will be of great significance in inertial navigation, gravity survey, geodynamics and earthquake prediction research. In this paper, satellite gradiometry formulated as an inverse problem of satellite geodesy is discussed from two mathematical aspects: Firstly, satellite gradiometry is considered as a continuous problem of harmonic downward continuation. The space-borne gravity gradients are assumed to be known continuously over the satellite (orbit) surface. Our purpose is to specify sufficient conditions under which uniqueness and existence can be guaranteed. It is shown that, in a spherical context, uniqueness results are obtainable by decomposition of the Hesse matrix in terms of tensor spherical harmonics. In particular, the gravitational potential is proved to be uniquely determined if second order radial derivatives are prescribed at satellite height. This information leads us to a reformulation of satellite gradiometry as a (Fredholm) pseudodifferential equation of first kind. Secondly, for a numerical realization, we assume the gravitational gradients to be known for a finite number of discrete points. The discrete problem is dealt with classical regularization methods, based on filtering techniques by means of spherical wavelets. A spherical singular integral-like approach to regularization methods is established, regularization wavelets are developed which allow the regularization in form of a multiresolution analysis. Moreover, a combined spherical harmonic and spherical regularization wavelet solution is derived as an appropriate tool in future (global and local) high-presision resolution of the earth" s gravitational potential.

- 136
- Deformation Analysis Using Navier Spline Interpolation (1996)
- The static deformation of the surface of the earth caused by surface pressure like the water load of an ocean or an artificial lake is discussed. First a brief mention is made on the solution of the Boussenesq problem for an infinite halfspace with the elastic medium to be assumed as homogeneous and isotropic. Then the elastic response for realistic earth models is determinied by spline interpolation using Navier splines. Major emphasis is on the derteminination of the elastic field caused by water loads from surface tractions on the (real) earth" s surface. Finally the elastic deflection of an artificial lake assuming a homogeneous isotropic crust is compared for both evaluation methods.