## Berichte der Arbeitsgruppe Technomathematik (AGTM Report)

### Filtern

#### Erscheinungsjahr

#### Schlagworte

- 209
- A Singular-Perturbed Two-Phase Stefan Problem Due to Slow Diffusion (1999)
- The asymptotic behaviour of a singular-perturbed two-phase Stefan problem due to slow diffusion in one of the two phases is investigated. In the limit the model equations reduce to a one-phase Stefan problem. A boundary layer at the moving interface makes it necessary to use a corrected interface condition obtained from matched asymptotic expansions. The approach is validated by numerical experiments using a front-tracking method.

- 213
- On a Recursive Approximation of Singularity Perturbed Parabolic Equations (extended version) (1999)
- The asymptotic analysis of IBVPs for the singularly perturbed parabolic PDE ... in the limit epsilon to zero motivate investigations of certain recursively defined approximative series ("ping-pong expansions"). The recursion formulae rely on operators assigning to a boundary condition at the left or the right boundary a solution of the parabolic PDE. Sufficient conditions for uniform convergence of ping-pong expansions are derived and a detailed analysis for the model problem ... is given.

- 127
- Second Order Scheme for the Spatially Homogeneous Boltzmann Equation with Maxwellian Molecules (1995)
- In the standard approach, particle methods for the Boltzmann equation are obtained using an explicit time discretization of the spatially homogeneous Boltzmann equation. This kind of discretization leads to a restriction of the discretization parameter as well as on the differential cross section in the case of the general Boltzmann equation. Recently, it was shown, how to construct an implicit particle scheme for the Boltzmann equation with Maxwellian molecules. The present paper combines both approaches using a linear combination of explicit and implicit discretizations. It is shown that the new method leads to a second order particle method, when using an equiweighting of explicit and implicit discretization.

- 91
- A Comparison of Simulation Methods for Rarefied Gas Flows (1993)
- Simulation methods like DSMC are an efficient tool to compute rarefied gas flows. Using supercomputers it is possible to include various real gas effects like vibrational energies or chemical reactions in a gas mixture. Nevertheless it is still necessary to improve the accuracy of the current simulation methods in order to reduce the computational effort. To support this task the paper presents a comparison of the classical DSMC method with the so called finite Pointset Method. This new approach was developed during several years in the framework of the European space project HERMES. The comparison given in the paper is based on two different testcases: a spatially homogeneous relaxation problem and a 2-dimensional axisymmetric flow problem at high Mach numbers.

- 83
- Boltzmann Simulations with Axisymmetric Geometry (1992)
- The paper presents theoretical and numerical investigations on simulation methods for the Boltzmann equation with axisymmetric geometry. The main task is to reduce the computational effort by taking advantage of the symmetry in the solution of the Boltzmann equation.; The reduction automatically leads to the concept of weighting functions for the radial space coordinate and therefore to a modified Boltzmann equation. Consequently the classical simulation methods have to be modified according to the new equation.; The numerical results shown in this paper - rarefied gas flows around a body with axisymmetric geometry - were done in the framework of the European space project HERMES.

- 61
- On the Efficiency of Simulation Methods for the Boltzmann Equation on Parallel Computers (1991)
- The paper presents a parallelization technique for the finite pointset method, a numerical method for rarefied gas flows.; First we give a short introduction to the Boltzmann equation, which describes the behaviour of rarefied gas flows. The basic ideas of the finite pointset method are presented and a strategy to parallelize the algorithm will be explained. It is shown that a static processor partition leads to an insufficient load-balance of the processors. Therefore an optimized parallelization technique based on an adaptive processor partition will be introduced, which improves the efficiency of the simulation code over the whole region of interesting flow situation. Finally we present a comparison of the CPU-times between a parallel computer and a vector computer.

- 128
- Numerical Simulation of the Stationary One-Dimensional Boltzmann Equation by Particle Methods (1995)
- The paper presents a numerical simulation technique - based on the well-known particle methods - for the stationary, one-dimensional Boltzmann equation for Maxwellian molecules. In contrast to the standard splitting methods, where one works with the instationary equation, the current approach simulates the direct solution of the stationary problem. The model problem investigated is the heat transfer between two parallel plates in the rarefied gas regime. An iteration process is introduced which leads to the stationary solution of the exact - space discretized - Boltzmann equation, in the sense of weak convergence.

- 165
- Some Estimates on the Boltzmann Collision Operator (1996)
- The paper presents some new estimates on the gain term of the Boltzmann collision operator. For Maxwellian molecules, it is shown that the L -norm of the gain term can be bounded in terms of the L1 and L -norm of the density function f. In the case of more general collision kernels, like the hard-sphere interaction potential, the gain term is estimated pointwise by the L -norm of the density function and the loss term of the Boltzmann collision operator.

- 148
- Simulation of Boundary Value Problems for the Boltzmann Equation (1995)
- The paper presents numerical results on the simulation of boundary value problems for the Boltzmann equation in one and two dimensions. In the one-dimensional case, we use prescribed fluxes at the left and diffusive conditions on the right end of a slab to study the resulting steady state solution. Moreover, we compute the numerical density function in velocity space and compare the result with the Chapman-Enskog distribution obtained in the limit for continuous media. The aim of the two-dimensional simulations is to investigate the possibility of a symmetry break in the numerical solution.

- 188
- A steady-state particle method for the Boltzmann equation (1998)
- We present a particle method for the numerical simulation of boundary value problems for the steady-state Boltzmann equation. Referring to some recent results concerning steady-state schemes, the current approach may be used for multi-dimensional problems, where the collision scattering kernel is not restricted to Maxwellian molecules. The efficiency of the new approach is demonstrated by some numerical results obtained from simulations for the (two-dimensional) BEnard's instability in a rarefied gas flow.