## Berichte der Arbeitsgruppe Technomathematik (AGTM Report)

119

A nonequilibrium situation governed by kinetic equations with strongly contrasted Knudsen numbers in different subdomains is discussed. We consider a domain decomposition problem for Boltzmann- and Euler equations, establish the correct coupling conditions and prove the validity of the obtained coupled solution . Moreover numerical examples comparing different types of coupling conditions are presented.

124

123

The paper presents some approximation methods for the Boltzmann equation. In the first part fully implicit discretization techniques for the spatially homogeneous Boltzmann equation are investigated. The implicit equation is solved using an iteration process. It is shown that the iteration converges to the correct solution for the moments of the distribution function as long as the mass conservation is strictly fulfilled. For a simple model Boltzmann equation some unexpected features of the implicit scheme and the corresponding iteration process are clarified. In the second part a new iteration algorithm is proposed which should be used for the stationary Boltzmann equation. The realization of the method is very similar to the standard splitting algorithms except some new stochastic elements.

122

The Boltzmann equation solutions are considered for the small Knudsen number. The main attention is devoted to certain deviations from the classical Navier-Stokes description. The equations for the quasistationary slow flows are derived. These equations do not contain the Knudsen number and provide in this sense a limiting description of hydrodynamical variables. Two well-known special cases are also indicated. In the isothermal case the equations are equivalent to the incompressible Navier-Stokes equations, in stationary case they coincide with the equations of slow non-isothermal flows. It is shown that the derived equations possess all principal properties of the Boltzmann equation on contrast to the Burnett equations. In one dimension the equations reduce to the nonlinear diffusion equations, being exactly solvable for Maxwell molecules. Multidimensional stationary heat-transfer problems are also discussed. It is shown that one can expect an essential difference between the Boltzmann equaiton solution in the limit of the continuous media and the corresponding solution of the Navier-Stokes equations.

121

We consider the numerical computation of nonlinear functionals of distribution functions approximated by point measures. Two methods are described and estimates for the speed of convergence as the number of points tends to infinity are given. Moreover numerical results for the entropy functional are presented.

120

118

Linear half-space problems can be used to solve domain decomposition problems between Boltzmann and aerodynamic equations. A new fast numerical method computing the asymptotic states and outgoing distributions for a linearized BGK half-space problem is presented. Relations with the so-called variational methods are discussed. In particular, we stress the connection between these methods and Chapman-Enskog type expansions.