## SEKI Report

### Refine

#### Document Type

- Preprint (85) (remove)

#### Keywords

- Knowledge acquisition (3)
- Deduction (2)
- HOT (2)
- MOLTKE-Projekt (2)
- Term rewriting systems (2)
- Wissensakquisition (2)
- combined systems with sha (2)
- confluence (2)
- disjoint union (2)
- innermost termination (2)

- 92,18
- Classification and Learning of Similarity Measures (1999)
- The background of this paper is the area of case-based reasoning. This is a reasoning technique where one tries to use the solution of some problem which has been solved earlier in order to obta in a solution of a given problem. As example of types of problems where this kind of reasoning occurs very often is the diagnosis of diseases or faults in technical systems. In abstract terms this reduces to a classification task. A difficulty arises when one has not just one solved problem but when there are very many. These are called "cases" and they are stored in the case-base. Then one has to select an appropriate case which means to find one which is "similar" to the actual problem. The notion of similarity has raised much interest in this context. We will first introduce a mathematical framework and define some basic concepts. Then we will study some abstract phenomena in this area and finally present some methods developed and realized in a system at the University of Kaiserslautern.

- 91,17
- A Guide to UNICOM, an Inductive Theorem Prover Based on Rewriting and Completion Techniques (1999)
- We provide an overview of UNICOM, an inductive theorem prover for equational logic which isbased on refined rewriting and completion techniques. The architecture of the system as well as itsfunctionality are described. Moreover, an insight into the most important aspects of the internalproof process is provided. This knowledge about how the central inductive proof componentof the system essentially works is crucial for human users who want to solve non-trivial prooftasks with UNICOM and thoroughly analyse potential failures. The presentation is focussedon practical aspects of understanding and using UNICOM. A brief but complete description ofthe command interface, an installation guide, an example session, a detailed extended exampleillustrating various special features and a collection of successfully handled examples are alsoincluded.

- 92,5
- goal-driven similarity assessment (1999)
- While most approaches to similarity assessment are oblivious of knowledge and goals, there is ample evidence that these elements of problem solving play an important role in similarity judgements. This paper is concerned with an approach for integrating assessment of similarity into a framework of problem solving that embodies central notions of problem solving like goals, knowledge and learning.

- 92,8
- On the Representation of Mathematical Concepts and their Translation into First-Order Logic (1999)
- To prove difficult theorems in a mathematical field requires substantial know-ledge of that field. In this thesis a frame-based knowledge representation formal-ism including higher-order sorted logic is presented, which supports a conceptualrepresentation and to a large extent guarantees the consistency of the built-upknowledge bases. In order to operationalize this knowledge, for instance, in anautomated theorem proving system, a class of sound morphisms from higher-orderinto first-order logic is given, in addition a sound and complete translation ispresented. The translations are bijective and hence compatible with a later proofpresentation.In order to prove certain theorems the comprehension axioms are necessary,(but difficult to handle in an automated system); such theorems are called trulyhigher-order. Many apparently higher-order theorems (i.e. theorems that arestated in higher-order syntax) however are essentially first-order in the sense thatthey can be proved without the comprehension axioms: for proving these theoremsthe translation technique as presented in this thesis is well-suited.

- 92,9
- Tactics for the Improvement of Problem Formulation in Resolution-Based Theorem Proving (1999)
- We transform a user-friendly formulation of aproblem to a machine-friendly one exploiting the variabilityof first-order logic to express facts. The usefulness of tacticsto improve the presentation is shown with several examples.In particular it is shown how tactical and resolution theoremproving can be combined.

- 92,12
- Conditional semi-Thue Systems for Presenting Monoids (1999)
- There are well known examples of monoids in literature which do not admit a finite andcanonical presentation by a semi-Thue system over a fixed alphabet, not even over an arbi-trary alphabet. We introduce conditional Thue and semi-Thue systems similar to conditionalterm rewriting systems as defined by Kaplan. Using these conditional semi-Thue systems wegive finite and canonical presentations of the examples mentioned above. Furthermore weshow, that each finitely generated monoid with decidable word problem is embeddable in amonoid which has a finite canonical conditional presentation.

- 92,13
- Analogical Reasoning with Typical Examples (1999)
- Typical examples, that is, examples that are representative for a particular situationor concept, play an important role in human knowledge representation and reasoning.In real life situations more often than not, instead of a lengthy abstract characteriza-tion, a typical example is used to describe the situation. This well-known observationhas been the motivation for various investigations in experimental psychology, whichalso motivate our formal characterization of typical examples, based on a partial orderfor their typicality. Reasoning by typical examples is then developed as a special caseof analogical reasoning using the semantic information contained in the correspondingconcept structures. We derive new inference rules by replacing the explicit informa-tion about connections and similarity, which are normally used to formalize analogicalinference rules, by information about the relationship to typical examples. Using theseinference rules analogical reasoning proceeds by checking a related typical example,this is a form of reasoning based on semantic information from cases.

- 92,20
- Methods - The Basic Units for Planning and Verifying Proofs (1999)
- This paper concerns a knowledge structure called method , within a compu-tational model for human oriented deduction. With human oriented theoremproving cast as an interleaving process of planning and verification, the body ofall methods reflects the reasoning repertoire of a reasoning system. While weadopt the general structure of methods introduced by Alan Bundy, we make anessential advancement in that we strictly separate the declarative knowledgefrom the procedural knowledge. This is achieved by postulating some stand-ard types of knowledge we have identified, such as inference rules, assertions,and proof schemata, together with corresponding knowledge interpreters. Ourapproach in effect changes the way deductive knowledge is encoded: A newcompound declarative knowledge structure, the proof schema, takes the placeof complicated procedures for modeling specific proof strategies. This change ofparadigm not only leads to representations easier to understand, it also enablesus modeling the even more important activity of formulating meta-methods,that is, operators that adapt existing methods to suit novel situations. In thispaper, we first introduce briefly the general framework for describing methods.Then we turn to several types of knowledge with their interpreters. Finally,we briefly illustrate some meta-methods.

- 92,21
- Integration of Rewriting, Narrowing, Compilation, and Heuristics for Equality Reasoning in Resolution-Based Theorem Proving (1999)
- We present a framework for the integration of the Knuth-Bendix completion algorithm with narrowing methods, compiled rewrite rules, and a heuristic difference reduction mechanism for paramodulation. The possibility of embedding theory unification algorithms into this framework is outlined. Results are presented and discussed for several examples of equality reasoning problems in the context of an actual implementation of an automated theorem proving system (the Mkrp-system) and a fast C implementation of the completion procedure. The Mkrp-system is based on the clause graph resolution procedure. The thesis shows the indispensibility of the constraining effects of completion and rewriting for equality reasoning in general and quantifies the amount of speed-up caused by various enhancements of the basic method. The simplicity of the superposition inference rule allows to construct an abstract machine for completion, which is presented together with computation times for a concrete implementation.

- 92,22
- OMEGA MKRP - A Proof Development Environment (1999)
- This report presents the main ideas underlyingtheOmegaGamma mkrp-system, an environmentfor the development of mathematical proofs. The motivation for the development ofthis system comes from our extensive experience with traditional first-order theoremprovers and aims to overcome some of their shortcomings. After comparing the benefitsand drawbacks of existing systems, we propose a system architecture that combinesthe positive features of different types of theorem-proving systems, most notably theadvantages of human-oriented systems based on methods (our version of tactics) andthe deductive strength of traditional automated theorem provers.In OmegaGamma mkrp a user first states a problem to be solved in a typed and sorted higher-order language (called POST ) and then applies natural deduction inference rules inorder to prove it. He can also insert a mathematical fact from an integrated data-base into the current partial proof, he can apply a domain-specific problem-solvingmethod, or he can call an integrated automated theorem prover to solve a subprob-lem. The user can also pass the control to a planning component that supports andpartially automates his long-range planning of a proof. Toward the important goal ofuser-friendliness, machine-generated proofs are transformed in several steps into muchshorter, better-structured proofs that are finally translated into natural language.This work was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2, D3)