Problems stemming from the study of logic calculi in connection with an infer-ence rule called "condensed detachment" are widely acknowledged as prominenttest sets for automated deduction systems and their search guiding heuristics. Itis in the light of these problems that we demonstrate the power of heuristics thatmake use of past proof experience with numerous experiments.We present two such heuristics. The first heuristic attempts to re-enact aproof of a proof problem found in the past in a flexible way in order to find a proofof a similar problem. The second heuristic employs "features" in connection withpast proof experience to prune the search space. Both these heuristics not onlyallow for substantial speed-ups, but also make it possible to prove problems thatwere out of reach when using so-called basic heuristics. Moreover, a combinationof these two heuristics can further increase performance.We compare our results with the results the creators of Otter obtained withthis renowned theorem prover and this way substantiate our achievements.

We present a method for learning heuristics employed by an automated proverto control its inference machine. The hub of the method is the adaptation of theparameters of a heuristic. Adaptation is accomplished by a genetic algorithm.The necessary guidance during the learning process is provided by a proof prob-lem and a proof of it found in the past. The objective of learning consists infinding a parameter configuration that avoids redundant effort w.r.t. this prob-lem and the particular proof of it. A heuristic learned (adapted) this way canthen be applied profitably when searching for a proof of a similar problem. So,our method can be used to train a proof heuristic for a class of similar problems.A number of experiments (with an automated prover for purely equationallogic) show that adapted heuristics are not only able to speed up enormously thesearch for the proof learned during adaptation. They also reduce redundancies inthe search for proofs of similar theorems. This not only results in finding proofsfaster, but also enables the prover to prove theorems it could not handle before.