## SEKI Report

### Filtern

#### Dokumenttyp

- Preprint (85)
- Wissenschaftlicher Artikel (6)
- Bericht (1)

#### Schlagworte

- Knowledge acquisition (3)
- resolution (3)
- Case-Based Reasoning (2)
- Deduction (2)
- HOT (2)
- MOLTKE-Projekt (2)
- Term rewriting systems (2)
- Wissensakquisition (2)
- analogy (2)
- combined systems with sha (2)

96,3

In recent years several computational systems and techniques fortheorem proving by analogy have been developed. The obvious prac-tical question, however, as to whether and when to use analogy hasbeen neglected badly in these developments. This paper addresses thisquestion, identifies situations where analogy is useful, and discussesthe merits of theorem proving by analogy in these situations. Theresults can be generalized to other domains.

96,1

In this report we give an overview of the development of our new Waldmeisterprover for equational theories. We elaborate a systematic stepwise design process, startingwith the inference system for unfailing Knuth - Bendix completion and ending up with animplementation which avoids the main diseases today's provers suffer from: overindulgencein time and space.Our design process is based on a logical three - level system model consisting of basicoperations for inference step execution, aggregated inference machine, and overall controlstrategy. Careful analysis of the inference system for unfailing completion has revealed thecrucial points responsible for time and space consumption. For the low level of our model,we introduce specialized data structures and algorithms speeding up the running system andcutting it down in size - both by one order of magnitude compared with standard techniques.Flexible control of the mid - level aggregation inside the resulting prover is made possible by acorresponding set of parameters. Experimental analysis shows that this flexibility is a pointof high importance. We go on with some implementation guidelines we have found valuablein the field of deduction.The resulting new prover shows that our design approach is promising. We compare oursystem's throughput with that of an established system and finally demonstrate how twovery hard problems could be solved by Waldmeister.

97,4

We present a distributed system, Dott, for approximately solving the Trav-eling Salesman Problem (TSP) based on the Teamwork method. So-calledexperts and specialists work independently and in parallel for given time pe-riods. For TSP, specialists are tour construction algorithms and experts usemodified genetic algorithms in which after each application of a genetic operatorthe resulting tour is locally optimized before it is added to the population. Aftera given time period the work of each expert and specialist is judged by a referee.A new start population, including selected individuals from each expert and spe-cialist, is generated by the supervisor, based on the judgments of the referees.Our system is able to find better tours than each of the experts or specialistsworking alone. Also results comparable to those of single runs can be found muchfaster by a team.

91,6

To prove difficult theorems in a mathematical field requires substantial know-ledge of that field. In this paper a frame-based knowledge representation formalismis presented, which supports a conceptual representation and to a large extent guar-antees the consistency of the built-up knowledge bases. We define a semantics ofthe representation by giving a translation into the underlaying logic.

93,14

Unification in an Extensional Lambda Calculus with Ordered Function Sorts and Constant Overloading
(1999)

We develop an order-sorted higher-order calculus suitable forautomatic theorem proving applications by extending the extensional simplytyped lambda calculus with a higher-order ordered sort concept and constantoverloading. Huet's well-known techniques for unifying simply typed lambdaterms are generalized to arrive at a complete transformation-based unificationalgorithm for this sorted calculus. Consideration of an order-sorted logicwith functional base sorts and arbitrary term declarations was originallyproposed by the second author in a 1991 paper; we give here a correctedcalculus which supports constant rather than arbitrary term declarations, aswell as a corrected unification algorithm, and prove in this setting resultscorresponding to those claimed there.

96,7

We present first steps towards fully automated deduction that merely requiresthe user to submit proof problems and pick up results. Essentially, this necessi-tates the automation of the crucial step in the use of a deduction system, namelychoosing and configuring an appropriate search-guiding heuristic. Furthermore,we motivate why learning capabilities are pivotal for satisfactory performance.The infrastructure for automating both the selection of a heuristic and integra-tion of learning are provided in form of an environment embedding the "core"deduction system.We have conducted a case study in connection with a deduction system basedon condensed detachment. Our experiments with a fully automated deductionsystem 'AutoCoDe' have produced remarkable results. We substantiate Au-toCoDe's encouraging achievements with a comparison with the renowned the-orem prover Otter. AutoCoDe outperforms Otter even when assuming veryfavorable conditions for Otter.

95,14

In this paper we are interested in an algebraic specification language that (1) allowsfor sufficient expessiveness, (2) admits a well-defined semantics, and (3) allows for formalproofs. To that end we study clausal specifications over built-in algebras. To keep thingssimple, we consider built-in algebras only that are given as the initial model of a Hornclause specification. On top of this Horn clause specification new operators are (partially)defined by positive/negative conditional equations. In the first part of the paper wedefine three types of semantics for such a hierarchical specification: model-theoretic,operational, and rewrite-based semantics. We show that all these semantics coincide,provided some restrictions are met. We associate a distinguished algebra A spec to ahierachical specification spec. This algebra is initial in the class of all models of spec.In the second part of the paper we study how to prove a theorem (a clause) valid in thedistinguished algebra A spec . We first present an abstract framework for inductive theoremprovers. Then we instantiate this framework for proving inductive validity. Finally wegive some examples to show how concrete proofs are carried out.This report was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D4-Projekt)

93,4

Most automated theorem provers suffer from the problem that theycan produce proofs only in formalisms difficult to understand even forexperienced mathematicians. Efforts have been made to transformsuch machine generated proofs into natural deduction (ND) proofs.Although the single steps are now easy to understand, the entire proofis usually at a low level of abstraction, containing too many tedioussteps. Therefore, it is not adequate as input to natural language gen-eration systems.To overcome these problems, we propose a new intermediate rep-resentation, called ND style proofs at the assertion level . After illus-trating the notion intuitively, we show that the assertion level stepscan be justified by domain-specific inference rules, and that these rulescan be represented compactly in a tree structure. Finally, we describea procedure which substantially shortens ND proofs by abstractingthem to the assertion level, and report our experience with furthertransformation into natural language.

96,14

We present an empirical study of mathematical proofs by diagonalization, the aim istheir mechanization based on proof planning techniques. We show that these proofs canbe constructed according to a strategy that (i) finds an indexing relation, (ii) constructsa diagonal element, and (iii) makes the implicit contradiction of the diagonal elementexplicit. Moreover we suggest how diagonal elements can be represented.

94,2

In this report we present a case study of employing goal-oriented heuristics whenproving equational theorems with the (unfailing) Knut-Bendix completion proce-dure. The theorems are taken from the domain of lattice ordered groups. It will bedemonstrated that goal-oriented (heuristic) criteria for selecting the next critical paircan in many cases significantly reduce the search effort and hence increase per-formance of the proving system considerably. The heuristic, goalADoriented criteriaare on the one hand based on so-called "measures" measuring occurrences andnesting of function symbols, and on the other hand based on matching subterms.We also deal with the property of goal-oriented heuristics to be particularly helpfulin certain stages of a proof. This fact can be addressed by using them in a frame-work for distributed (equational) theorem proving, namely the "teamwork-method".